
    _ri#                        d Z ddlmZ ddlZddlmZmZ ddlZddlm	Z	 ddl
mZ ddlmZ erddlmZmZmZmZmZ dd	lmZmZ  ed
          dej        dfdd            Z ed
          	 	 ddd            ZdS )zpickle compat    )annotationsN)TYPE_CHECKINGAny)pickle_compat)
set_module)
get_handle)CompressionOptionsFilePathReadPickleBufferStorageOptionsWriteBuffer)	DataFrameSeriespandasinferobjr   filepath_or_bufferFilePath | WriteBuffer[bytes]compressionr	   protocolintstorage_optionsStorageOptions | NonereturnNonec                    |dk     rt           j        }t          |d|d|          5 }t          j        | |j        |           ddd           dS # 1 swxY w Y   dS )a  
    Pickle (serialize) object to file.

    Parameters
    ----------
    obj : any object
        Any python object.
    filepath_or_buffer : str, path object, or file-like object
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a binary ``write()`` function.
        Also accepts URL. URL has to be of S3 or GCS.
    compression : str or dict, default 'infer'
        For on-the-fly compression of the output data. If 'infer' and
        'filepath_or_buffer' is path-like, then detect compression from the
        following extensions: '.gz', '.bz2', '.zip', '.xz', '.zst', '.tar',
        '.tar.gz', '.tar.xz' or '.tar.bz2' (otherwise no compression).
        Set to ``None`` for no compression.
        Can also be a dict with key ``'method'`` set
        to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'xz'``,
        ``'tar'``} and other key-value pairs are forwarded to
        ``zipfile.ZipFile``, ``gzip.GzipFile``,
        ``bz2.BZ2File``, ``zstandard.ZstdCompressor``, ``lzma.LZMAFile`` or
        ``tarfile.TarFile``, respectively.
        As an example, the following could be passed for faster compression
        and to create a reproducible gzip archive:
        ``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.
    protocol : int
        Int which indicates which protocol should be used by the pickler,
        default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible
        values for this parameter depend on the version of Python. For Python
        2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value.
        For Python >= 3.4, 4 is a valid value. A negative value for the
        protocol parameter is equivalent to setting its value to
        HIGHEST_PROTOCOL.
    storage_options : dict, optional
        Extra options that make sense for a particular storage connection, e.g.
        host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
        are forwarded to ``urllib.request.Request`` as header options. For other
        URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
        forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
        details, and for more examples on storage options refer `here
        <https://pandas.pydata.org/docs/user_guide/io.html?
        highlight=storage_options#reading-writing-remote-files>`_.

        .. [1] https://docs.python.org/3/library/pickle.html

    See Also
    --------
    read_pickle : Load pickled pandas object (or any object) from file.
    DataFrame.to_hdf : Write DataFrame to an HDF5 file.
    DataFrame.to_sql : Write DataFrame to a SQL database.
    DataFrame.to_parquet : Write a DataFrame to the binary parquet format.

    Examples
    --------
    >>> original_df = pd.DataFrame(
    ...     {{"foo": range(5), "bar": range(5, 10)}}
    ... )  # doctest: +SKIP
    >>> original_df  # doctest: +SKIP
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> pd.to_pickle(original_df, "./dummy.pkl")  # doctest: +SKIP

    >>> unpickled_df = pd.read_pickle("./dummy.pkl")  # doctest: +SKIP
    >>> unpickled_df  # doctest: +SKIP
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    r   wbFr   is_textr   )r   N)pickleHIGHEST_PROTOCOLr   dumphandle)r   r   r   r   r   handless         h/var/www/html/bestrading.cuttalo.com/models/btc_v9/venv/lib/python3.11/site-packages/pandas/io/pickle.py	to_pickler&       s    h !||*	'
 
 
 < 
C(;;;;< < < < < < < < < < < < < < < < < <s   AAAFilePath | ReadPickleBufferDataFrame | Seriesc                *   t           t          t          t          f}t	          | d|d|          5 }	 t          j        d          5  t          j        dt                     t          j
        |j                  cddd           cddd           S # 1 swxY w Y   n\# |$ rT |j                            d           t          j        |j                  
                                cY cddd           S w xY w	 ddd           dS # 1 swxY w Y   dS )	aH  
    Load pickled pandas object (or any object) from file and return unpickled object.

    .. warning::

       Loading pickled data received from untrusted sources can be
       unsafe. See `here <https://docs.python.org/3/library/pickle.html>`__.

    Parameters
    ----------
    filepath_or_buffer : str, path object, or file-like object
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a binary ``readlines()`` function.
        Also accepts URL. URL is not limited to S3 and GCS.
    compression : str or dict, default 'infer'
        For on-the-fly decompression of on-disk data. If 'infer' and
        'filepath_or_buffer' is path-like, then detect compression from the
        following extensions: '.gz', '.bz2', '.zip', '.xz', '.zst', '.tar',
        '.tar.gz', '.tar.xz' or '.tar.bz2' (otherwise no compression).
        If using 'zip' or 'tar', the ZIP file must contain only one data file
        to be read in.
        Set to ``None`` for no decompression.
        Can also be a dict with key ``'method'`` set
        to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'xz'``,
        ``'tar'``} and other key-value pairs are forwarded to
        ``zipfile.ZipFile``, ``gzip.GzipFile``,
        ``bz2.BZ2File``, ``zstandard.ZstdDecompressor``, ``lzma.LZMAFile`` or
        ``tarfile.TarFile``, respectively.
        As an example, the following could be passed for Zstandard decompression
        using a custom compression dictionary:
        ``compression={'method': 'zstd', 'dict_data': my_compression_dict}``.
    storage_options : dict, optional
        Extra options that make sense for a particular storage connection, e.g.
        host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
        are forwarded to ``urllib.request.Request`` as header options. For other
        URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
        forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
        details, and for more examples on storage options refer `here
        <https://pandas.pydata.org/docs/user_guide/io.html?
        highlight=storage_options#reading-writing-remote-files>`_.

    Returns
    -------
    object
        The unpickled pandas object (or any object) that was stored in file.

    See Also
    --------
    DataFrame.to_pickle : Pickle (serialize) DataFrame object to file.
    Series.to_pickle : Pickle (serialize) Series object to file.
    read_hdf : Read HDF5 file into a DataFrame.
    read_sql : Read SQL query or database table into a DataFrame.
    read_parquet : Load a parquet object, returning a DataFrame.

    Notes
    -----
    read_pickle is only guaranteed to be backwards compatible to pandas 1.0
    provided the object was serialized with to_pickle.

    Examples
    --------
    >>> original_df = pd.DataFrame(
    ...     {{"foo": range(5), "bar": range(5, 10)}}
    ... )  # doctest: +SKIP
    >>> original_df  # doctest: +SKIP
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> pd.to_pickle(original_df, "./dummy.pkl")  # doctest: +SKIP

    >>> unpickled_df = pd.read_pickle("./dummy.pkl")  # doctest: +SKIP
    >>> unpickled_df  # doctest: +SKIP
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    rbFr   T)recordignoreNr   )AttributeErrorImportErrorModuleNotFoundError	TypeErrorr   warningscatch_warningssimplefilterWarningr    loadr#   seekr   	Unpickler)r   r   r   excs_to_catchr$   s        r%   read_pickler9      s   r $[2EyQM	'
 
 
 B 

	B(555 3 3%h888{7>223 3 3 3 3 3 3B B B B B B B B3 3 3 3 3 3 3 3 3  	B 	B 	B N""" *7>::??AAAA'B B B B B B B B	B	3B B B B B B B B B B B B B B B B B BsY   DB3B9BB	BB	BDA
C7(D6C77DDD)r   r   r   r   r   r	   r   r   r   r   r   r   )r   N)r   r'   r   r	   r   r   r   r(   )__doc__
__future__r   r    typingr   r   r1   pandas.compatr   pandas.util._decoratorsr   pandas.io.commonr   pandas._typingr	   r
   r   r   r   r   r   r   r!   r&   r9        r%   <module>rC      s     " " " " " "          ' ' ' ' ' ' . . . . . . ' ' ' ' ' '                      H '.+-1^< ^< ^< ^< ^<B H '.-1lB lB lB lB lB lB lBrB   