"""
Provide the groupby split-apply-combine paradigm. Define the GroupBy
class providing the base-class of operations.

The SeriesGroupBy and DataFrameGroupBy sub-class
(defined in pandas.core.groupby.generic)
expose these user-facing objects to provide specific functionality.
"""

from __future__ import annotations

from collections.abc import (
    Callable,
    Hashable,
    Iterable,
    Iterator,
    Mapping,
    Sequence,
)
import datetime
from functools import (
    partial,
    wraps,
)
from typing import (
    TYPE_CHECKING,
    Concatenate,
    Literal,
    Self,
    TypeAlias,
    TypeVar,
    Union,
    cast,
    final,
    overload,
)
import warnings

import numpy as np

from pandas._libs import (
    Timestamp,
    lib,
)
from pandas._libs.algos import rank_1d
import pandas._libs.groupby as libgroupby
from pandas._libs.missing import NA
from pandas._typing import (
    AnyArrayLike,
    ArrayLike,
    DtypeObj,
    IndexLabel,
    IntervalClosedType,
    NDFrameT,
    PositionalIndexer,
    RandomState,
    npt,
)
from pandas.compat.numpy import function as nv
from pandas.errors import (
    AbstractMethodError,
    DataError,
    Pandas4Warning,
)
from pandas.util._decorators import cache_readonly
from pandas.util._exceptions import find_stack_level

from pandas.core.dtypes.cast import (
    coerce_indexer_dtype,
    ensure_dtype_can_hold_na,
)
from pandas.core.dtypes.common import (
    is_bool,
    is_bool_dtype,
    is_float_dtype,
    is_hashable,
    is_integer,
    is_integer_dtype,
    is_list_like,
    is_numeric_dtype,
    is_object_dtype,
    is_scalar,
    is_string_dtype,
    needs_i8_conversion,
    pandas_dtype,
)
from pandas.core.dtypes.missing import (
    isna,
    na_value_for_dtype,
    notna,
)

from pandas.core import (
    algorithms,
    sample,
)
from pandas.core._numba import executor
from pandas.core.arrays import (
    ArrowExtensionArray,
    BaseMaskedArray,
    ExtensionArray,
    FloatingArray,
    IntegerArray,
    SparseArray,
)
from pandas.core.arrays.string_ import StringDtype
from pandas.core.arrays.string_arrow import ArrowStringArray
from pandas.core.base import (
    PandasObject,
    SelectionMixin,
)
import pandas.core.common as com
from pandas.core.frame import DataFrame
from pandas.core.generic import NDFrame
from pandas.core.groupby import (
    base,
    numba_,
    ops,
)
from pandas.core.groupby.grouper import get_grouper
from pandas.core.groupby.indexing import (
    GroupByIndexingMixin,
    GroupByNthSelector,
)
from pandas.core.indexes.api import (
    Index,
    MultiIndex,
    default_index,
)
from pandas.core.internals.blocks import ensure_block_shape
from pandas.core.series import Series
from pandas.core.sorting import get_group_index_sorter
from pandas.core.util.numba_ import (
    get_jit_arguments,
    maybe_use_numba,
    prepare_function_arguments,
)

if TYPE_CHECKING:
    from pandas._libs.tslibs import BaseOffset
    from pandas._libs.tslibs.timedeltas import Timedelta
    from pandas._typing import (
        Any,
        P,
        T,
    )

    from pandas.core.indexers.objects import BaseIndexer
    from pandas.core.resample import Resampler
    from pandas.core.window import (
        ExpandingGroupby,
        ExponentialMovingWindowGroupby,
        RollingGroupby,
    )

_groupby_agg_method_engine_template = """
Compute {fname} of group values.

Parameters
----------
numeric_only : bool, default {no}
    Include only float, int, boolean columns.

    .. versionchanged:: 2.0.0

        numeric_only no longer accepts ``None``.

min_count : int, default {mc}
    The required number of valid values to perform the operation. If fewer
    than ``min_count`` non-NA values are present the result will be NA.

engine : str, default None {e}
    * ``'cython'`` : Runs rolling apply through C-extensions from cython.
    * ``'numba'`` : Runs rolling apply through JIT compiled code from numba.
        Only available when ``raw`` is set to ``True``.
    * ``None`` : Defaults to ``'cython'`` or globally setting
        ``compute.use_numba``

engine_kwargs : dict, default None {ek}
    * For ``'cython'`` engine, there are no accepted ``engine_kwargs``
    * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
        and ``parallel`` dictionary keys. The values must either be ``True`` or
        ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
        ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be
        applied to both the ``func`` and the ``apply`` groupby aggregation.

Returns
-------
Series or DataFrame
    Computed {fname} of values within each group.

See Also
--------
SeriesGroupBy.min : Return the min of the group values.
DataFrameGroupBy.min : Return the min of the group values.
SeriesGroupBy.max : Return the max of the group values.
DataFrameGroupBy.max : Return the max of the group values.
SeriesGroupBy.sum : Return the sum of the group values.
DataFrameGroupBy.sum : Return the sum of the group values.

Examples
--------
{example}
"""

_groupby_agg_method_skipna_engine_template = """
Compute {fname} of group values.

Parameters
----------
numeric_only : bool, default {no}
    Include only float, int, boolean columns.

    .. versionchanged:: 2.0.0

        numeric_only no longer accepts ``None``.

min_count : int, default {mc}
    The required number of valid values to perform the operation. If fewer
    than ``min_count`` non-NA values are present the result will be NA.

skipna : bool, default {s}
    Exclude NA/null values. If the entire group is NA and ``skipna`` is
    ``True``, the result will be NA.

    .. versionchanged:: 3.0.0

engine : str, default None {e}
    * ``'cython'`` : Runs rolling apply through C-extensions from cython.
    * ``'numba'`` : Runs rolling apply through JIT compiled code from numba.
        Only available when ``raw`` is set to ``True``.
    * ``None`` : Defaults to ``'cython'`` or globally setting
        ``compute.use_numba``

engine_kwargs : dict, default None {ek}
    * For ``'cython'`` engine, there are no accepted ``engine_kwargs``
    * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
        and ``parallel`` dictionary keys. The values must either be ``True`` or
        ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
        ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be
        applied to both the ``func`` and the ``apply`` groupby aggregation.

Returns
-------
Series or DataFrame
    Computed {fname} of values within each group.

See Also
--------
SeriesGroupBy.min : Return the min of the group values.
DataFrameGroupBy.min : Return the min of the group values.
SeriesGroupBy.max : Return the max of the group values.
DataFrameGroupBy.max : Return the max of the group values.
SeriesGroupBy.sum : Return the sum of the group values.
DataFrameGroupBy.sum : Return the sum of the group values.

Examples
--------
{example}
"""

_pipe_template = """
Apply a ``func`` with arguments to this %(klass)s object and return its result.

Use `.pipe` when you want to improve readability by chaining together
functions that expect Series, DataFrames, GroupBy or Resampler objects.
Instead of writing

>>> h = lambda x, arg2, arg3: x + 1 - arg2 * arg3
>>> g = lambda x, arg1: x * 5 / arg1
>>> f = lambda x: x ** 4
>>> df = pd.DataFrame([["a", 4], ["b", 5]], columns=["group", "value"])
>>> h(g(f(df.groupby('group')), arg1=1), arg2=2, arg3=3)  # doctest: +SKIP

You can write

>>> (df.groupby('group')
...    .pipe(f)
...    .pipe(g, arg1=1)
...    .pipe(h, arg2=2, arg3=3))  # doctest: +SKIP

which is much more readable.

Parameters
----------
func : callable or tuple of (callable, str)
    Function to apply to this %(klass)s object or, alternatively,
    a `(callable, data_keyword)` tuple where `data_keyword` is a
    string indicating the keyword of `callable` that expects the
    %(klass)s object.
*args : iterable, optional
       Positional arguments passed into `func`.
**kwargs : dict, optional
         A dictionary of keyword arguments passed into `func`.

Returns
-------
%(klass)s
    The original object with the function `func` applied.

See Also
--------
Series.pipe : Apply a function with arguments to a series.
DataFrame.pipe: Apply a function with arguments to a dataframe.
apply : Apply function to each group instead of to the
    full %(klass)s object.

Notes
-----
See more `here
<https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#piping-function-calls>`_

Examples
--------
%(examples)s
"""

_transform_template = """
Call function producing a same-indexed %(klass)s on each group.

Returns a %(klass)s having the same indexes as the original object
filled with the transformed values.

Parameters
----------
func : function, str
    Function to apply to each group. See the Notes section below for requirements.

    Accepted inputs are:

    - String
    - Python function
    - Numba JIT function with ``engine='numba'`` specified.

    Only passing a single function is supported with this engine.
    If the ``'numba'`` engine is chosen, the function must be
    a user defined function with ``values`` and ``index`` as the
    first and second arguments respectively in the function signature.
    Each group's index will be passed to the user defined function
    and optionally available for use.

    If a string is chosen, then it needs to be the name
    of the groupby method you want to use.
*args
    Positional arguments to pass to func.
engine : str, default None
    * ``'cython'`` : Runs the function through C-extensions from cython.
    * ``'numba'`` : Runs the function through JIT compiled code from numba.
    * ``None`` : Defaults to ``'cython'`` or the global setting ``compute.use_numba``

engine_kwargs : dict, default None
    * For ``'cython'`` engine, there are no accepted ``engine_kwargs``
    * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
      and ``parallel`` dictionary keys. The values must either be ``True`` or
      ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
      ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be
      applied to the function

**kwargs
    Keyword arguments to be passed into func.

Returns
-------
%(klass)s
    %(klass)s with the same indexes as the original object filled
    with transformed values.

See Also
--------
%(klass)s.groupby.apply : Apply function ``func`` group-wise and combine
    the results together.
%(klass)s.groupby.aggregate : Aggregate using one or more operations.
%(klass)s.transform : Call ``func`` on self producing a %(klass)s with the
    same axis shape as self.

Notes
-----
Each group is endowed the attribute 'name' in case you need to know
which group you are working on.

The current implementation imposes three requirements on f:

* f must return a value that either has the same shape as the input
  subframe or can be broadcast to the shape of the input subframe.
  For example, if `f` returns a scalar it will be broadcast to have the
  same shape as the input subframe.
* if this is a DataFrame, f must support application column-by-column
  in the subframe. If f also supports application to the entire subframe,
  then a fast path is used starting from the second chunk.
* f must not mutate groups. Mutation is not supported and may
  produce unexpected results. See :ref:`gotchas.udf-mutation` for more details.

When using ``engine='numba'``, there will be no "fall back" behavior internally.
The group data and group index will be passed as numpy arrays to the JITed
user defined function, and no alternative execution attempts will be tried.

The resulting dtype will reflect the return value of the passed ``func``,
see the examples below.

.. versionchanged:: 2.0.0

    When using ``.transform`` on a grouped DataFrame and the transformation function
    returns a DataFrame, pandas now aligns the result's index
    with the input's index. You can call ``.to_numpy()`` on the
    result of the transformation function to avoid alignment.

Examples
--------
%(example)s"""


@final
class GroupByPlot(PandasObject):
    """
    Class implementing the .plot attribute for groupby objects.
    """

    def __init__(self, groupby: GroupBy) -> None:
        self._groupby = groupby

    def __call__(self, *args, **kwargs):
        def f(self):
            return self.plot(*args, **kwargs)

        f.__name__ = "plot"
        return self._groupby._python_apply_general(f, self._groupby._selected_obj)

    def __getattr__(self, name: str):
        def attr(*args, **kwargs):
            def f(self):
                return getattr(self.plot, name)(*args, **kwargs)

            return self._groupby._python_apply_general(f, self._groupby._selected_obj)

        return attr


_KeysArgType: TypeAlias = (
    Hashable
    | list[Hashable]
    | Callable[[Hashable], Hashable]
    | list[Callable[[Hashable], Hashable]]
    | Mapping[Hashable, Hashable]
)


class BaseGroupBy(PandasObject, SelectionMixin[NDFrameT], GroupByIndexingMixin):
    _hidden_attrs = PandasObject._hidden_attrs | {
        "as_index",
        "dropna",
        "exclusions",
        "grouper",
        "group_keys",
        "keys",
        "level",
        "obj",
        "observed",
        "sort",
    }

    _grouper: ops.BaseGrouper
    keys: _KeysArgType | None = None
    level: IndexLabel | None = None
    group_keys: bool

    @final
    def __len__(self) -> int:
        return self._grouper.ngroups

    @final
    def __repr__(self) -> str:
        # TODO: Better repr for GroupBy object
        return object.__repr__(self)

    @final
    @property
    def groups(self) -> dict[Hashable, Index]:
        """
        Dict {group name -> group labels}.

        This property provides a dictionary representation of the groupings formed
        during a groupby operation, where each key represents a unique group value from
        the specified column(s), and each value is a list of index labels
        that belong to that group.

        See Also
        --------
        core.groupby.DataFrameGroupBy.get_group : Retrieve group from a
            ``DataFrameGroupBy`` object with provided name.
        core.groupby.SeriesGroupBy.get_group : Retrieve group from a
            ``SeriesGroupBy`` object with provided name.
        core.resample.Resampler.get_group : Retrieve group from a
            ``Resampler`` object with provided name.

        Examples
        --------

        For SeriesGroupBy:

        >>> lst = ["a", "a", "b"]
        >>> ser = pd.Series([1, 2, 3], index=lst)
        >>> ser
        a    1
        a    2
        b    3
        dtype: int64
        >>> ser.groupby(level=0).groups
        {'a': ['a', 'a'], 'b': ['b']}

        For DataFrameGroupBy:

        >>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]]
        >>> df = pd.DataFrame(data, columns=["a", "b", "c"])
        >>> df
           a  b  c
        0  1  2  3
        1  1  5  6
        2  7  8  9
        >>> df.groupby(by="a").groups
        {1: [0, 1], 7: [2]}

        For Resampler:

        >>> ser = pd.Series(
        ...     [1, 2, 3, 4],
        ...     index=pd.DatetimeIndex(
        ...         ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"]
        ...     ),
        ... )
        >>> ser
        2023-01-01    1
        2023-01-15    2
        2023-02-01    3
        2023-02-15    4
        dtype: int64
        >>> ser.resample("MS").groups
        {Timestamp('2023-01-01 00:00:00'): np.int64(2),
         Timestamp('2023-02-01 00:00:00'): np.int64(4)}
        """
        if isinstance(self.keys, list) and len(self.keys) == 1:
            warnings.warn(
                "In a future version, the keys of `groups` will be a "
                f"tuple with a single element, e.g. ({self.keys[0]},) , "
                f"instead of a scalar, e.g. {self.keys[0]}, when grouping "
                "by a list with a single element. Use ``df.groupby(by='a').groups`` "
                "instead of ``df.groupby(by=['a']).groups`` to avoid this warning",
                Pandas4Warning,
                stacklevel=find_stack_level(),
            )
        return self._grouper.groups

    @final
    @property
    def ngroups(self) -> int:
        return self._grouper.ngroups

    @final
    @property
    def indices(self) -> dict[Hashable, npt.NDArray[np.intp]]:
        """
        Dict {group name -> group indices}.

        The dictionary keys represent the group labels (e.g., timestamps for a
        time-based resampling operation), and the values are arrays of integer
        positions indicating where the elements of each group are located in the
        original data. This property is particularly useful when working with
        resampled data, as it provides insight into how the original time-series data
        has been grouped.

        See Also
        --------
        core.groupby.DataFrameGroupBy.indices : Provides a mapping of group rows to
            positions of the elements.
        core.groupby.SeriesGroupBy.indices : Provides a mapping of group rows to
            positions of the elements.
        core.resample.Resampler.indices : Provides a mapping of group rows to
            positions of the elements.

        Examples
        --------

        For SeriesGroupBy:

        >>> lst = ["a", "a", "b"]
        >>> ser = pd.Series([1, 2, 3], index=lst)
        >>> ser
        a    1
        a    2
        b    3
        dtype: int64
        >>> ser.groupby(level=0).indices
        {'a': array([0, 1]), 'b': array([2])}

        For DataFrameGroupBy:

        >>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]]
        >>> df = pd.DataFrame(
        ...     data, columns=["a", "b", "c"], index=["owl", "toucan", "eagle"]
        ... )
        >>> df
                a  b  c
        owl     1  2  3
        toucan  1  5  6
        eagle   7  8  9
        >>> df.groupby(by=["a"]).indices
        {np.int64(1): array([0, 1]), np.int64(7): array([2])}

        For Resampler:

        >>> ser = pd.Series(
        ...     [1, 2, 3, 4],
        ...     index=pd.DatetimeIndex(
        ...         ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"]
        ...     ),
        ... )
        >>> ser
        2023-01-01    1
        2023-01-15    2
        2023-02-01    3
        2023-02-15    4
        dtype: int64
        >>> ser.resample("MS").indices
        defaultdict(<class 'list'>, {Timestamp('2023-01-01 00:00:00'): [0, 1],
        Timestamp('2023-02-01 00:00:00'): [2, 3]})
        """
        return self._grouper.indices

    @final
    def _get_index(self, name):
        """
        Safe get multiple indices, translate keys for
        datelike to underlying repr.
        """

        def get_converter(s):
            # possibly convert to the actual key types
            # in the indices, could be a Timestamp or an np.datetime64
            if isinstance(s, datetime.datetime):
                return lambda key: Timestamp(key)
            elif isinstance(s, np.datetime64):
                return lambda key: Timestamp(key).asm8
            else:
                return lambda key: key

        if isna(name):
            return self.indices.get(np.nan, [])
        if isinstance(name, tuple):
            name = tuple(np.nan if isna(comp) else comp for comp in name)

        if len(self.indices) > 0:
            index_sample = next(iter(self.indices))
        else:
            index_sample = None  # Dummy sample

        if isinstance(index_sample, tuple):
            if not isinstance(name, tuple):
                msg = "must supply a tuple to get_group with multiple grouping keys"
                raise ValueError(msg)
            if not len(name) == len(index_sample):
                try:
                    # If the original grouper was a tuple
                    return self.indices[name]
                except KeyError as err:
                    # turns out it wasn't a tuple
                    msg = (
                        "must supply a same-length tuple to get_group "
                        "with multiple grouping keys"
                    )
                    raise ValueError(msg) from err

            converters = (get_converter(s) for s in index_sample)
            name = tuple(f(n) for f, n in zip(converters, name, strict=True))
        else:
            converter = get_converter(index_sample)
            name = converter(name)

        return self.indices.get(name, [])

    @final
    @cache_readonly
    def _selected_obj(self):
        # Note: _selected_obj is always just `self.obj` for SeriesGroupBy
        if isinstance(self.obj, Series):
            return self.obj

        if self._selection is not None:
            if is_hashable(self._selection):
                # i.e. a single key, so selecting it will return a Series.
                #  In this case, _obj_with_exclusions would wrap the key
                #  in a list and return a single-column DataFrame.
                return self.obj[self._selection]

            # Otherwise _selection is equivalent to _selection_list, so
            #  _selected_obj matches _obj_with_exclusions, so we can reuse
            #  that and avoid making a copy.
            return self._obj_with_exclusions

        return self.obj

    @final
    def _dir_additions(self) -> set[str]:
        return self.obj._dir_additions()

    @overload
    def pipe(
        self,
        func: Callable[Concatenate[Self, P], T],
        *args: P.args,
        **kwargs: P.kwargs,
    ) -> T: ...

    @overload
    def pipe(
        self,
        func: tuple[Callable[..., T], str],
        *args: Any,
        **kwargs: Any,
    ) -> T: ...

    def pipe(
        self,
        func: Callable[Concatenate[Self, P], T] | tuple[Callable[..., T], str],
        *args: Any,
        **kwargs: Any,
    ) -> T:
        """
        Apply a ``func`` with arguments to this GroupBy object and return its result.

        Use `.pipe` when you want to improve readability by chaining together
        functions that expect Series, DataFrames, GroupBy or Resampler objects.
        Instead of writing

        >>> h = lambda x, arg2, arg3: x + 1 - arg2 * arg3
        >>> g = lambda x, arg1: x * 5 / arg1
        >>> f = lambda x: x**4
        >>> df = pd.DataFrame([["a", 4], ["b", 5]], columns=["group", "value"])
        >>> h(g(f(df.groupby("group")), arg1=1), arg2=2, arg3=3)  # doctest: +SKIP

        You can write

        >>> (
        ...     df.groupby("group").pipe(f).pipe(g, arg1=1).pipe(h, arg2=2, arg3=3)
        ... )  # doctest: +SKIP

        which is much more readable.

        Parameters
        ----------
        func : callable or tuple of (callable, str)
            Function to apply to this GroupBy object or, alternatively,
            a `(callable, data_keyword)` tuple where `data_keyword` is a
            string indicating the keyword of `callable` that expects the
            GroupBy object.
        *args : iterable, optional
            Positional arguments passed into `func`.
        **kwargs : dict, optional
            A dictionary of keyword arguments passed into `func`.

        Returns
        -------
        GroupBy
            The return type of `func`.

        See Also
        --------
        Series.pipe : Apply a function with arguments to a series.
        DataFrame.pipe : Apply a function with arguments to a dataframe.
        apply : Apply function to each group instead of to the
            full GroupBy object.

        Notes
        -----
        See more `here
        <https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#piping-function-calls>`_

        Examples
        --------
        >>> df = pd.DataFrame({"A": "a b a b".split(), "B": [1, 2, 3, 4]})
        >>> df
           A  B
        0  a  1
        1  b  2
        2  a  3
        3  b  4

        To get the difference between each groups maximum and minimum value in one
        pass, you can do

        >>> df.groupby("A").pipe(lambda x: x.max() - x.min())
           B
        A
        a  2
        b  2
        """
        return com.pipe(self, func, *args, **kwargs)

    @final
    def get_group(self, name) -> DataFrame | Series:
        """
        Construct DataFrame from group with provided name.

        Parameters
        ----------
        name : object
            The name of the group to get as a DataFrame.

        Returns
        -------
        Series or DataFrame
            Get the respective Series or DataFrame corresponding to the group provided.

        See Also
        --------
        DataFrameGroupBy.groups: Dictionary representation of the groupings formed
            during a groupby operation.
        DataFrameGroupBy.indices: Provides a mapping of group rows to positions
            of the elements.
        SeriesGroupBy.groups: Dictionary representation of the groupings formed
            during a groupby operation.
        SeriesGroupBy.indices: Provides a mapping of group rows to positions
            of the elements.

        Examples
        --------

        For SeriesGroupBy:

        >>> lst = ["a", "a", "b"]
        >>> ser = pd.Series([1, 2, 3], index=lst)
        >>> ser
        a    1
        a    2
        b    3
        dtype: int64
        >>> ser.groupby(level=0).get_group("a")
        a    1
        a    2
        dtype: int64

        For DataFrameGroupBy:

        >>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]]
        >>> df = pd.DataFrame(
        ...     data, columns=["a", "b", "c"], index=["owl", "toucan", "eagle"]
        ... )
        >>> df
                a  b  c
        owl     1  2  3
        toucan  1  5  6
        eagle   7  8  9
        >>> df.groupby(by=["a"]).get_group((1,))
                a  b  c
        owl     1  2  3
        toucan  1  5  6

        For Resampler:

        >>> ser = pd.Series(
        ...     [1, 2, 3, 4],
        ...     index=pd.DatetimeIndex(
        ...         ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"]
        ...     ),
        ... )
        >>> ser
        2023-01-01    1
        2023-01-15    2
        2023-02-01    3
        2023-02-15    4
        dtype: int64
        >>> ser.resample("MS").get_group("2023-01-01")
        2023-01-01    1
        2023-01-15    2
        dtype: int64
        """
        keys = self.keys
        level = self.level
        # mypy doesn't recognize level/keys as being sized when passed to len
        if (is_list_like(level) and len(level) == 1) or (  # type: ignore[arg-type]
            is_list_like(keys) and len(keys) == 1  # type: ignore[arg-type]
        ):
            # GH#25971
            if isinstance(name, tuple) and len(name) == 1:
                name = name[0]
            else:
                raise KeyError(name)

        inds = self._get_index(name)
        if not len(inds):
            raise KeyError(name)
        return self._selected_obj.iloc[inds]

    @final
    def __iter__(self) -> Iterator[tuple[Hashable, NDFrameT]]:
        """
        Groupby iterator.

        This method provides an iterator over the groups created by the ``resample``
        or ``groupby`` operation on the object. The method yields tuples where
        the first element is the label (group key) corresponding to each group or
        resampled bin, and the second element is the subset of the data that falls
        within that group or bin.

        Returns
        -------
        Iterator
            Generator yielding a sequence of (name, subsetted object)
            for each group.

        See Also
        --------
        Series.groupby : Group data by a specific key or column.
        DataFrame.groupby : Group DataFrame using mapper or by columns.
        DataFrame.resample : Resample a DataFrame.
        Series.resample : Resample a Series.

        Examples
        --------

        For SeriesGroupBy:

        >>> lst = ["a", "a", "b"]
        >>> ser = pd.Series([1, 2, 3], index=lst)
        >>> ser
        a    1
        a    2
        b    3
        dtype: int64
        >>> for x, y in ser.groupby(level=0):
        ...     print(f"{x}\\n{y}\\n")
        a
        a    1
        a    2
        dtype: int64
        b
        b    3
        dtype: int64

        For DataFrameGroupBy:

        >>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]]
        >>> df = pd.DataFrame(data, columns=["a", "b", "c"])
        >>> df
           a  b  c
        0  1  2  3
        1  1  5  6
        2  7  8  9
        >>> for x, y in df.groupby(by=["a"]):
        ...     print(f"{x}\\n{y}\\n")
        (1,)
           a  b  c
        0  1  2  3
        1  1  5  6
        (7,)
           a  b  c
        2  7  8  9

        For Resampler:

        >>> ser = pd.Series(
        ...     [1, 2, 3, 4],
        ...     index=pd.DatetimeIndex(
        ...         ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"]
        ...     ),
        ... )
        >>> ser
        2023-01-01    1
        2023-01-15    2
        2023-02-01    3
        2023-02-15    4
        dtype: int64
        >>> for x, y in ser.resample("MS"):
        ...     print(f"{x}\\n{y}\\n")
        2023-01-01 00:00:00
        2023-01-01    1
        2023-01-15    2
        dtype: int64
        2023-02-01 00:00:00
        2023-02-01    3
        2023-02-15    4
        dtype: int64
        """
        keys = self.keys
        level = self.level
        result = self._grouper.get_iterator(self._selected_obj)
        # mypy: Argument 1 to "len" has incompatible type "Hashable"; expected "Sized"
        if (is_list_like(level) and len(level) == 1) or (  # type: ignore[arg-type]
            isinstance(keys, list) and len(keys) == 1
        ):
            # GH#42795 - when keys is a list, return tuples even when length is 1
            result = (((key,), group) for key, group in result)
        return result


# To track operations that expand dimensions, like ohlc
OutputFrameOrSeries = TypeVar("OutputFrameOrSeries", bound=NDFrame)


class GroupBy(BaseGroupBy[NDFrameT]):
    """
    Class for grouping and aggregating relational data.

    See aggregate, transform, and apply functions on this object.

    It's easiest to use obj.groupby(...) to use GroupBy, but you can also do:

    ::

        grouped = groupby(obj, ...)

    Parameters
    ----------
    obj : pandas object
    level : int, default None
        Level of MultiIndex
    groupings : list of Grouping objects
        Most users should ignore this
    exclusions : array-like, optional
        List of columns to exclude
    name : str
        Most users should ignore this

    Returns
    -------
    **Attributes**
    groups : dict
        {group name -> group labels}
    len(grouped) : int
        Number of groups

    Notes
    -----
    After grouping, see aggregate, apply, and transform functions. Here are
    some other brief notes about usage. When grouping by multiple groups, the
    result index will be a MultiIndex (hierarchical) by default.

    Iteration produces (key, group) tuples, i.e. chunking the data by group. So
    you can write code like:

    ::

        grouped = obj.groupby(keys)
        for key, group in grouped:
            # do something with the data

    Function calls on GroupBy, if not specially implemented, "dispatch" to the
    grouped data. So if you group a DataFrame and wish to invoke the std()
    method on each group, you can simply do:

    ::

        df.groupby(mapper).std()

    rather than

    ::

        df.groupby(mapper).aggregate(np.std)

    You can pass arguments to these "wrapped" functions, too.

    See the online documentation for full exposition on these topics and much
    more
    """

    _grouper: ops.BaseGrouper
    as_index: bool

    @final
    def __init__(
        self,
        obj: NDFrameT,
        keys: _KeysArgType | None = None,
        level: IndexLabel | None = None,
        grouper: ops.BaseGrouper | None = None,
        exclusions: frozenset[Hashable] | None = None,
        selection: IndexLabel | None = None,
        as_index: bool = True,
        sort: bool = True,
        group_keys: bool = True,
        observed: bool = False,
        dropna: bool = True,
    ) -> None:
        self._selection = selection

        assert isinstance(obj, NDFrame), type(obj)

        self.level = level
        self.as_index = as_index
        self.keys = keys
        self.sort = sort
        self.group_keys = group_keys
        self.dropna = dropna

        if grouper is None:
            grouper, exclusions, obj = get_grouper(
                obj,
                keys,
                level=level,
                sort=sort,
                observed=observed,
                dropna=self.dropna,
            )

        self.observed = observed
        self.obj = obj
        self._grouper = grouper
        self.exclusions = frozenset(exclusions) if exclusions else frozenset()

    def __getattr__(self, attr: str):
        if attr in self._internal_names_set:
            return object.__getattribute__(self, attr)
        if attr in self.obj:
            return self[attr]

        raise AttributeError(
            f"'{type(self).__name__}' object has no attribute '{attr}'"
        )

    @final
    def _op_via_apply(self, name: str, *args, **kwargs):
        """Compute the result of an operation by using GroupBy's apply."""
        f = getattr(type(self._obj_with_exclusions), name)

        def curried(x):
            return f(x, *args, **kwargs)

        # preserve the name so we can detect it when calling plot methods,
        # to avoid duplicates
        curried.__name__ = name

        # special case otherwise extra plots are created when catching the
        # exception below
        if name in base.plotting_methods:
            return self._python_apply_general(curried, self._selected_obj)

        is_transform = name in base.transformation_kernels
        result = self._python_apply_general(
            curried,
            self._obj_with_exclusions,
            is_transform=is_transform,
            not_indexed_same=not is_transform,
        )

        if self._grouper.has_dropped_na and is_transform:
            # result will have dropped rows due to nans, fill with null
            # and ensure index is ordered same as the input
            result = self._set_result_index_ordered(result)
        return result

    # -----------------------------------------------------------------
    # Dispatch/Wrapping

    @final
    def _concat_objects(
        self,
        values,
        not_indexed_same: bool = False,
        is_transform: bool = False,
    ):
        from pandas.core.reshape.concat import concat

        if self.group_keys and not is_transform:
            if self.as_index:
                # possible MI return case
                group_keys = self._grouper.result_index
                group_levels = self._grouper.levels
                group_names = self._grouper.names

                result = concat(
                    values,
                    axis=0,
                    keys=group_keys,
                    levels=group_levels,
                    names=group_names,
                    sort=False,
                )
            else:
                result = concat(values, axis=0)

        elif not not_indexed_same:
            result = concat(values, axis=0)

            ax = self._selected_obj.index
            if self.dropna:
                labels = self._grouper.ids
                mask = labels != -1
                ax = ax[mask]

            # this is a very unfortunate situation
            # we can't use reindex to restore the original order
            # when the ax has duplicates
            # so we resort to this
            # GH 14776, 30667
            # TODO: can we reuse e.g. _reindex_non_unique?
            if ax.has_duplicates and not result.axes[0].equals(ax):
                # e.g. test_category_order_transformer
                target = algorithms.unique1d(ax._values)
                indexer, _ = result.index.get_indexer_non_unique(target)
                result = result.take(indexer, axis=0)
            else:
                result = result.reindex(ax, axis=0)

        else:
            result = concat(values, axis=0)

        if self.obj.ndim == 1:
            name = self.obj.name
        elif is_hashable(self._selection):
            name = self._selection
        else:
            name = None

        if isinstance(result, Series) and name is not None:
            result.name = name

        return result.__finalize__(self.obj, method="groupby")

    @final
    def _set_result_index_ordered(
        self, result: OutputFrameOrSeries
    ) -> OutputFrameOrSeries:
        # set the result index on the passed values object and
        # return the new object, xref 8046

        index = self.obj.index

        if self._grouper.is_monotonic and not self._grouper.has_dropped_na:
            # shortcut if we have an already ordered grouper
            result = result.set_axis(index, axis=0)
            return result

        # row order is scrambled => sort the rows by position in original index
        original_positions = Index(self._grouper.result_ilocs, copy=False)
        result = result.set_axis(original_positions, axis=0)
        result = result.sort_index(axis=0)
        if self._grouper.has_dropped_na:
            # Add back in any missing rows due to dropna - index here is integral
            # with values referring to the row of the input so can use RangeIndex
            result = result.reindex(default_index(len(index)), axis=0)
        result = result.set_axis(index, axis=0)

        return result

    @final
    def _insert_inaxis_grouper(
        self, result: Series | DataFrame, qs: npt.NDArray[np.float64] | None = None
    ) -> DataFrame:
        if isinstance(result, Series):
            result = result.to_frame()

        n_groupings = len(self._grouper.groupings)

        if qs is not None:
            result.insert(
                0, f"level_{n_groupings}", np.tile(qs, len(result) // len(qs))
            )

        # zip in reverse so we can always insert at loc 0
        for level, (name, lev) in enumerate(
            zip(
                reversed(self._grouper.names),
                self._grouper.get_group_levels(),
                strict=True,
            )
        ):
            if name is None:
                # Behave the same as .reset_index() when a level is unnamed
                name = (
                    "index"
                    if n_groupings == 1 and qs is None
                    else f"level_{n_groupings - level - 1}"
                )

            # GH #28549
            # When using .apply(-), name will be in columns already
            if name not in result.columns:
                # if in_axis:
                if qs is None:
                    result.insert(0, name, lev)
                else:
                    result.insert(0, name, Index(np.repeat(lev, len(qs)), copy=False))

        return result

    @final
    def _wrap_aggregated_output(
        self,
        result: Series | DataFrame,
        qs: npt.NDArray[np.float64] | None = None,
    ):
        """
        Wraps the output of GroupBy aggregations into the expected result.

        Parameters
        ----------
        result : Series, DataFrame

        Returns
        -------
        Series or DataFrame
        """
        # ATM we do not get here for SeriesGroupBy; when we do, we will
        #  need to require that result.name already match self.obj.name

        if not self.as_index:
            # `not self.as_index` is only relevant for DataFrameGroupBy,
            #   enforced in __init__
            result = self._insert_inaxis_grouper(result, qs=qs)
            result = result._consolidate()
            result.index = default_index(len(result))

        else:
            index = self._grouper.result_index
            if qs is not None:
                # We get here with len(qs) != 1 and not self.as_index
                #  in test_pass_args_kwargs
                index = _insert_quantile_level(index, qs)
            result.index = index

        return result

    def _wrap_applied_output(
        self,
        data,
        values: list,
        not_indexed_same: bool = False,
        is_transform: bool = False,
    ):
        raise AbstractMethodError(self)

    # -----------------------------------------------------------------
    # numba

    @final
    def _numba_prep(self, data: DataFrame):
        ngroups = self._grouper.ngroups
        sorted_index = self._grouper.result_ilocs
        sorted_ids = self._grouper._sorted_ids

        sorted_data = data.take(sorted_index, axis=0).to_numpy()
        # GH 46867
        index_data = data.index
        if isinstance(index_data, MultiIndex):
            if len(self._grouper.groupings) > 1:
                raise NotImplementedError(
                    "Grouping with more than 1 grouping labels and "
                    "a MultiIndex is not supported with engine='numba'"
                )
            group_key = self._grouper.groupings[0].name
            index_data = index_data.get_level_values(group_key)
        sorted_index_data = index_data.take(sorted_index).to_numpy()

        starts, ends = lib.generate_slices(sorted_ids, ngroups)
        return (
            starts,
            ends,
            sorted_index_data,
            sorted_data,
        )

    def _numba_agg_general(
        self,
        func: Callable,
        dtype_mapping: dict[np.dtype, Any],
        engine_kwargs: dict[str, bool] | None,
        **aggregator_kwargs,
    ):
        """
        Perform groupby with a standard numerical aggregation function (e.g. mean)
        with Numba.
        """
        if not self.as_index:
            raise NotImplementedError(
                "as_index=False is not supported. Use .reset_index() instead."
            )

        data = self._obj_with_exclusions
        df = data if data.ndim == 2 else data.to_frame()

        aggregator = executor.generate_shared_aggregator(
            func,
            dtype_mapping,
            True,  # is_grouped_kernel
            **get_jit_arguments(engine_kwargs),
        )
        # Pass group ids to kernel directly if it can handle it
        # (This is faster since it doesn't require a sort)
        ids = self._grouper.ids
        ngroups = self._grouper.ngroups

        res_mgr = df._mgr.apply(
            aggregator, labels=ids, ngroups=ngroups, **aggregator_kwargs
        )
        res_mgr.axes[1] = self._grouper.result_index
        result = df._constructor_from_mgr(res_mgr, axes=res_mgr.axes)

        if data.ndim == 1:
            result = result.squeeze("columns")
            result.name = data.name
        else:
            result.columns = data.columns
        return result

    @final
    def _transform_with_numba(self, func, *args, engine_kwargs=None, **kwargs):
        """
        Perform groupby transform routine with the numba engine.

        This routine mimics the data splitting routine of the DataSplitter class
        to generate the indices of each group in the sorted data and then passes the
        data and indices into a Numba jitted function.
        """
        data = self._obj_with_exclusions
        index_sorting = self._grouper.result_ilocs
        df = data if data.ndim == 2 else data.to_frame()

        starts, ends, sorted_index, sorted_data = self._numba_prep(df)
        numba_.validate_udf(func)
        args, kwargs = prepare_function_arguments(
            func, args, kwargs, num_required_args=2
        )
        numba_transform_func = numba_.generate_numba_transform_func(
            func, **get_jit_arguments(engine_kwargs)
        )
        result = numba_transform_func(
            sorted_data,
            sorted_index,
            starts,
            ends,
            len(df.columns),
            *args,
        )
        # result values needs to be resorted to their original positions since we
        # evaluated the data sorted by group
        result = result.take(np.argsort(index_sorting), axis=0)
        index = data.index
        if data.ndim == 1:
            result_kwargs = {"name": data.name}
            result = result.ravel()
        else:
            result_kwargs = {"columns": data.columns}
        return data._constructor(result, index=index, **result_kwargs)

    @final
    def _aggregate_with_numba(self, func, *args, engine_kwargs=None, **kwargs):
        """
        Perform groupby aggregation routine with the numba engine.

        This routine mimics the data splitting routine of the DataSplitter class
        to generate the indices of each group in the sorted data and then passes the
        data and indices into a Numba jitted function.
        """
        data = self._obj_with_exclusions
        df = data if data.ndim == 2 else data.to_frame()

        starts, ends, sorted_index, sorted_data = self._numba_prep(df)
        numba_.validate_udf(func)
        args, kwargs = prepare_function_arguments(
            func, args, kwargs, num_required_args=2
        )
        numba_agg_func = numba_.generate_numba_agg_func(
            func, **get_jit_arguments(engine_kwargs)
        )
        result = numba_agg_func(
            sorted_data,
            sorted_index,
            starts,
            ends,
            len(df.columns),
            *args,
        )
        index = self._grouper.result_index
        if data.ndim == 1:
            result_kwargs = {"name": data.name}
            result = result.ravel()
        else:
            result_kwargs = {"columns": data.columns}
        res = data._constructor(result, index=index, **result_kwargs)
        if not self.as_index:
            res = self._insert_inaxis_grouper(res)
            res.index = default_index(len(res))
        return res

    # -----------------------------------------------------------------
    # apply/agg/transform

    def apply(self, func, *args, include_groups: bool = False, **kwargs) -> NDFrameT:
        """
        Apply function ``func`` group-wise and combine the results together.

        The function passed to ``apply`` must take a dataframe as its first
        argument and return a DataFrame, Series or scalar. ``apply`` will
        then take care of combining the results back together into a single
        dataframe or series. ``apply`` is therefore a highly flexible
        grouping method.

        While ``apply`` is a very flexible method, its downside is that
        using it can be quite a bit slower than using more specific methods
        like ``agg`` or ``transform``. Pandas offers a wide range of method that will
        be much faster than using ``apply`` for their specific purposes, so try to
        use them before reaching for ``apply``.

        Parameters
        ----------
        func : callable
            A callable that takes a dataframe as its first argument, and
            returns a dataframe, a series or a scalar. In addition the
            callable may take positional and keyword arguments.

        *args : tuple
            Optional positional arguments to pass to ``func``.

        include_groups : bool, default False
            When True, will attempt to apply ``func`` to the groupings in
            the case that they are columns of the DataFrame. If this raises a
            TypeError, the result will be computed with the groupings excluded.
            When False, the groupings will be excluded when applying ``func``.

            .. versionadded:: 2.2.0

            .. versionchanged:: 3.0.0

            The default changed from True to False, and True is no longer allowed.

        **kwargs : dict
            Optional keyword arguments to pass to ``func``.

        Returns
        -------
        Series or DataFrame
            A pandas object with the result of applying ``func`` to each group.

        See Also
        --------
        pipe : Apply function to the full GroupBy object instead of to each
            group.
        aggregate : Apply aggregate function to the GroupBy object.
        transform : Apply function column-by-column to the GroupBy object.
        Series.apply : Apply a function to a Series.
        DataFrame.apply : Apply a function to each row or column of a DataFrame.

        Notes
        -----
        The resulting dtype will reflect the return value of the passed ``func``,
        see the examples below.

        Functions that mutate the passed object can produce unexpected
        behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
        for more details.

        Examples
        --------
        >>> df = pd.DataFrame({"A": "a a b".split(), "B": [1, 2, 3], "C": [4, 6, 5]})
        >>> g1 = df.groupby("A", group_keys=False)
        >>> g2 = df.groupby("A", group_keys=True)

        Notice that ``g1`` and ``g2`` have two groups, ``a`` and ``b``, and only
        differ in their ``group_keys`` argument. Calling `apply` in various ways,
        we can get different grouping results:

        Example 1: below the function passed to `apply` takes a DataFrame as
        its argument and returns a DataFrame. `apply` combines the result for
        each group together into a new DataFrame:

        >>> g1[["B", "C"]].apply(lambda x: x / x.sum())
                  B    C
        0  0.333333  0.4
        1  0.666667  0.6
        2  1.000000  1.0

        In the above, the groups are not part of the index. We can have them included
        by using ``g2`` where ``group_keys=True``:

        >>> g2[["B", "C"]].apply(lambda x: x / x.sum())
                    B    C
        A
        a 0  0.333333  0.4
          1  0.666667  0.6
        b 2  1.000000  1.0

        Example 2: The function passed to `apply` takes a DataFrame as
        its argument and returns a Series.  `apply` combines the result for
        each group together into a new DataFrame.

        The resulting dtype will reflect the return value of the passed ``func``.

        >>> g1[["B", "C"]].apply(lambda x: x.astype(float).max() - x.min())
             B    C
        A
        a  1.0  2.0
        b  0.0  0.0

        >>> g2[["B", "C"]].apply(lambda x: x.astype(float).max() - x.min())
             B    C
        A
        a  1.0  2.0
        b  0.0  0.0

        The ``group_keys`` argument has no effect here because the result is not
        like-indexed (i.e. :ref:`a transform <groupby.transform>`) when compared
        to the input.

        Example 3: The function passed to `apply` takes a DataFrame as
        its argument and returns a scalar. `apply` combines the result for
        each group together into a Series, including setting the index as
        appropriate:

        >>> g1.apply(lambda x: x.C.max() - x.B.min())
        A
        a    5
        b    2
        dtype: int64

        Example 4: The function passed to ``apply`` returns ``None`` for one of the
        group. This group is filtered from the result:

        >>> g1.apply(lambda x: None if x.iloc[0, 0] == 3 else x)
           B  C
        0  1  4
        1  2  6
        """
        if include_groups:
            raise ValueError("include_groups=True is no longer allowed.")
        if isinstance(func, str):
            if hasattr(self, func):
                res = getattr(self, func)
                if callable(res):
                    return res(*args, **kwargs)
                elif args or kwargs:
                    raise ValueError(f"Cannot pass arguments to property {func}")
                return res

            else:
                raise TypeError(f"apply func should be callable, not '{func}'")

        elif args or kwargs:
            if callable(func):

                @wraps(func)
                def f(g):
                    return func(g, *args, **kwargs)

            else:
                raise ValueError(
                    "func must be a callable if args or kwargs are supplied"
                )
        else:
            f = func

        return self._python_apply_general(f, self._obj_with_exclusions)

    @final
    def _python_apply_general(
        self,
        f: Callable,
        data: DataFrame | Series,
        not_indexed_same: bool | None = None,
        is_transform: bool = False,
        is_agg: bool = False,
    ) -> NDFrameT:
        """
        Apply function f in python space

        Parameters
        ----------
        f : callable
            Function to apply
        data : Series or DataFrame
            Data to apply f to
        not_indexed_same: bool, optional
            When specified, overrides the value of not_indexed_same. Apply behaves
            differently when the result index is equal to the input index, but
            this can be coincidental leading to value-dependent behavior.
        is_transform : bool, default False
            Indicator for whether the function is actually a transform
            and should not have group keys prepended.
        is_agg : bool, default False
            Indicator for whether the function is an aggregation. When the
            result is empty, we don't want to warn for this case.
            See _GroupBy._python_agg_general.

        Returns
        -------
        Series or DataFrame
            data after applying f
        """
        values, mutated = self._grouper.apply_groupwise(f, data)
        if not_indexed_same is None:
            not_indexed_same = mutated

        return self._wrap_applied_output(
            data,
            values,
            not_indexed_same,
            is_transform,
        )

    @final
    def _agg_general(
        self,
        numeric_only: bool = False,
        min_count: int = -1,
        *,
        alias: str,
        npfunc: Callable | None = None,
        **kwargs,
    ):
        result = self._cython_agg_general(
            how=alias,
            alt=npfunc,
            numeric_only=numeric_only,
            min_count=min_count,
            **kwargs,
        )
        return result.__finalize__(self.obj, method="groupby")

    def _agg_py_fallback(
        self, how: str, values: ArrayLike, ndim: int, alt: Callable
    ) -> ArrayLike:
        """
        Fallback to pure-python aggregation if _cython_operation raises
        NotImplementedError.
        """
        # We get here with a) EADtypes and b) object dtype
        assert alt is not None

        if values.ndim == 1:
            # For DataFrameGroupBy we only get here with ExtensionArray
            ser = Series(values, copy=False)
        else:
            # We only get here with values.dtype == object
            df = DataFrame(values.T, dtype=values.dtype)
            # bc we split object blocks in grouped_reduce, we have only 1 col
            # otherwise we'd have to worry about block-splitting GH#39329
            assert df.shape[1] == 1
            # Avoid call to self.values that can occur in DataFrame
            #  reductions; see GH#28949
            ser = df.iloc[:, 0]

        # We do not get here with UDFs, so we know that our dtype
        #  should always be preserved by the implemented aggregations
        # TODO: Is this exactly right; see WrappedCythonOp get_result_dtype?
        try:
            res_values = self._grouper.agg_series(ser, alt, preserve_dtype=True)
        except Exception as err:
            msg = f"agg function failed [how->{how},dtype->{ser.dtype}]"
            # preserve the kind of exception that raised
            raise type(err)(msg) from err

        dtype = ser.dtype
        if dtype == object:
            res_values = res_values.astype(object, copy=False)
        elif is_string_dtype(dtype):
            # mypy doesn't infer dtype is an ExtensionDtype
            string_array_cls = dtype.construct_array_type()  # type: ignore[union-attr]
            res_values = string_array_cls._from_sequence(res_values, dtype=dtype)

        # If we are DataFrameGroupBy and went through a SeriesGroupByPath
        # then we need to reshape
        # GH#32223 includes case with IntegerArray values, ndarray res_values
        # test_groupby_duplicate_columns with object dtype values
        return ensure_block_shape(res_values, ndim=ndim)

    @final
    def _cython_agg_general(
        self,
        how: str,
        alt: Callable | None = None,
        numeric_only: bool = False,
        min_count: int = -1,
        **kwargs,
    ):
        # Note: we never get here with how="ohlc" for DataFrameGroupBy;
        #  that goes through SeriesGroupBy

        if not is_bool(numeric_only):
            raise ValueError("numeric_only accepts only Boolean values")

        data = self._get_data_to_aggregate(numeric_only=numeric_only, name=how)

        def array_func(values: ArrayLike) -> ArrayLike:
            try:
                result = self._grouper._cython_operation(
                    "aggregate",
                    values,
                    how,
                    axis=data.ndim - 1,
                    min_count=min_count,
                    **kwargs,
                )
            except NotImplementedError:
                # generally if we have numeric_only=False
                # and non-applicable functions
                # try to python agg
                # TODO: shouldn't min_count matter?
                # TODO: avoid special casing SparseArray here
                if how in ["any", "all"] and isinstance(values, SparseArray):
                    pass
                elif alt is None or how in ["any", "all", "std", "sem"]:
                    raise  # TODO: re-raise as TypeError?  should not be reached
            else:
                return result

            assert alt is not None
            result = self._agg_py_fallback(how, values, ndim=data.ndim, alt=alt)
            return result

        new_mgr = data.grouped_reduce(array_func)
        res = self._wrap_agged_manager(new_mgr)
        if how in ["idxmin", "idxmax"]:
            # mypy expects how to be Literal["idxmin", "idxmax"].
            res = self._wrap_idxmax_idxmin(res, how=how, skipna=kwargs["skipna"])  # type: ignore[arg-type]
        out = self._wrap_aggregated_output(res)
        return out

    def _cython_transform(self, how: str, numeric_only: bool = False, **kwargs):
        raise AbstractMethodError(self)

    @final
    def _transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
        # optimized transforms
        if not isinstance(func, str):
            return self._transform_general(func, engine, engine_kwargs, *args, **kwargs)

        elif func not in base.transform_kernel_allowlist:
            msg = f"'{func}' is not a valid function name for transform(name)"
            raise ValueError(msg)
        elif func in base.cythonized_kernels or func in base.transformation_kernels:
            # cythonized transform or canned "agg+broadcast"
            if engine is not None:
                kwargs["engine"] = engine
                kwargs["engine_kwargs"] = engine_kwargs
            return getattr(self, func)(*args, **kwargs)

        else:
            # i.e. func in base.reduction_kernels
            if self.observed:
                return self._reduction_kernel_transform(
                    func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs
                )

            with (
                com.temp_setattr(self, "observed", True),
                com.temp_setattr(self, "_grouper", self._grouper.observed_grouper),
            ):
                return self._reduction_kernel_transform(
                    func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs
                )

    @final
    def _reduction_kernel_transform(
        self, func, *args, engine=None, engine_kwargs=None, **kwargs
    ):
        # GH#30918 Use _transform_fast only when we know func is an aggregation
        # If func is a reduction, we need to broadcast the
        # result to the whole group. Compute func result
        # and deal with possible broadcasting below.
        with com.temp_setattr(self, "as_index", True):
            # GH#49834 - result needs groups in the index for
            # _wrap_transform_fast_result
            if func in ["idxmin", "idxmax"]:
                func = cast(Literal["idxmin", "idxmax"], func)
                result = self._idxmax_idxmin(func, True, *args, **kwargs)
            else:
                if engine is not None:
                    kwargs["engine"] = engine
                    kwargs["engine_kwargs"] = engine_kwargs
                result = getattr(self, func)(*args, **kwargs)

        return self._wrap_transform_fast_result(result)

    @final
    def _wrap_transform_fast_result(self, result: NDFrameT) -> NDFrameT:
        """
        Fast transform path for aggregations.
        """
        obj = self._obj_with_exclusions

        # for each col, reshape to size of original frame by take operation
        ids = self._grouper.ids
        result = result.reindex(self._grouper.result_index, axis=0)

        if self.obj.ndim == 1:
            # i.e. SeriesGroupBy
            out = algorithms.take_nd(result._values, ids)
            output = obj._constructor(out, index=obj.index, name=obj.name)
        else:
            # `.size()` gives Series output on DataFrame input, need axis 0
            # GH#46209
            # Don't convert indices: negative indices need to give rise
            # to null values in the result
            new_ax = result.index.take(ids)
            output = result._reindex_with_indexers({0: (new_ax, ids)}, allow_dups=True)
            output = output.set_axis(obj.index, axis=0)
        return output

    # -----------------------------------------------------------------
    # Utilities

    @final
    def _apply_filter(self, indices, dropna):
        if len(indices) == 0:
            indices = np.array([], dtype="int64")
        else:
            indices = np.sort(np.concatenate(indices))
        if dropna:
            filtered = self._selected_obj.take(indices, axis=0)
        else:
            mask = np.empty(len(self._selected_obj.index), dtype=bool)
            mask.fill(False)
            mask[indices.astype(int)] = True
            # mask fails to broadcast when passed to where; broadcast manually.
            mask = np.tile(mask, [*self._selected_obj.shape[1:], 1]).T
            filtered = self._selected_obj.where(mask)  # Fill with NaNs.
        return filtered

    @final
    def _cumcount_array(self, ascending: bool = True) -> np.ndarray:
        """
        Parameters
        ----------
        ascending : bool, default True
            If False, number in reverse, from length of group - 1 to 0.

        Notes
        -----
        this is currently implementing sort=False
        (though the default is sort=True) for groupby in general
        """
        ids = self._grouper.ids
        ngroups = self._grouper.ngroups
        sorter = get_group_index_sorter(ids, ngroups)
        ids, count = ids[sorter], len(ids)

        if count == 0:
            return np.empty(0, dtype=np.int64)

        run = np.r_[True, ids[:-1] != ids[1:]]
        rep = np.diff(np.r_[np.nonzero(run)[0], count])
        out = (~run).cumsum()

        if ascending:
            out -= np.repeat(out[run], rep)
        else:
            out = np.repeat(out[np.r_[run[1:], True]], rep) - out

        if self._grouper.has_dropped_na:
            out = np.where(ids == -1, np.nan, out.astype(np.float64, copy=False))
        else:
            out = out.astype(np.int64, copy=False)

        rev = np.empty(count, dtype=np.intp)
        rev[sorter] = np.arange(count, dtype=np.intp)
        return out[rev]

    # -----------------------------------------------------------------

    @final
    @property
    def _obj_1d_constructor(self) -> Callable:
        # GH28330 preserve subclassed Series/DataFrames
        if isinstance(self.obj, DataFrame):
            return self.obj._constructor_sliced
        assert isinstance(self.obj, Series)
        return self.obj._constructor

    @final
    def any(self, skipna: bool = True) -> NDFrameT:
        """
        Return True if any value in the group is truthful, else False.

        Parameters
        ----------
        skipna : bool, default True
            Flag to ignore nan values during truth testing.

        Returns
        -------
        Series or DataFrame
            DataFrame or Series of boolean values, where a value is True if any element
            is True within its respective group, False otherwise.

        See Also
        --------
        Series.any : Apply function any to a Series.
        DataFrame.any : Apply function any to each row or column of a DataFrame.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "b"]
        >>> ser = pd.Series([1, 2, 0], index=lst)
        >>> ser
        a    1
        a    2
        b    0
        dtype: int64
        >>> ser.groupby(level=0).any()
        a     True
        b    False
        dtype: bool

        For DataFrameGroupBy:

        >>> data = [[1, 0, 3], [1, 0, 6], [7, 1, 9]]
        >>> df = pd.DataFrame(
        ...     data, columns=["a", "b", "c"], index=["ostrich", "penguin", "parrot"]
        ... )
        >>> df
                 a  b  c
        ostrich  1  0  3
        penguin  1  0  6
        parrot   7  1  9
        >>> df.groupby(by=["a"]).any()
               b      c
        a
        1  False   True
        7   True   True
        """
        return self._cython_agg_general(
            "any",
            alt=lambda x: Series(x, copy=False).any(skipna=skipna),
            skipna=skipna,
        )

    @final
    def all(self, skipna: bool = True) -> NDFrameT:
        """
        Return True if all values in the group are truthful, else False.

        Parameters
        ----------
        skipna : bool, default True
            Flag to ignore nan values during truth testing.

        Returns
        -------
        Series or DataFrame
            DataFrame or Series of boolean values, where a value is True if all elements
            are True within its respective group, False otherwise.

        See Also
        --------
        Series.all : Apply function all to a Series.
        DataFrame.all : Apply function all to each row or column of a DataFrame.

        Examples
        --------

        For SeriesGroupBy:

        >>> lst = ["a", "a", "b"]
        >>> ser = pd.Series([1, 2, 0], index=lst)
        >>> ser
        a    1
        a    2
        b    0
        dtype: int64
        >>> ser.groupby(level=0).all()
        a     True
        b    False
        dtype: bool

        For DataFrameGroupBy:

        >>> data = [[1, 0, 3], [1, 5, 6], [7, 8, 9]]
        >>> df = pd.DataFrame(
        ...     data, columns=["a", "b", "c"], index=["ostrich", "penguin", "parrot"]
        ... )
        >>> df
                 a  b  c
        ostrich  1  0  3
        penguin  1  5  6
        parrot   7  8  9
        >>> df.groupby(by=["a"]).all()
               b      c
        a
        1  False   True
        7   True   True
        """
        return self._cython_agg_general(
            "all",
            alt=lambda x: Series(x, copy=False).all(skipna=skipna),
            skipna=skipna,
        )

    @final
    def count(self) -> NDFrameT:
        """
        Compute count of group, excluding missing values.

        Returns
        -------
        Series or DataFrame
            Count of values within each group.

        See Also
        --------
        Series.count : Apply function count to a Series.
        DataFrame.count : Apply function count to each row or column of a DataFrame.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "b"]
        >>> ser = pd.Series([1, 2, np.nan], index=lst)
        >>> ser
        a    1.0
        a    2.0
        b    NaN
        dtype: float64
        >>> ser.groupby(level=0).count()
        a    2
        b    0
        dtype: int64

        For DataFrameGroupBy:

        >>> data = [[1, np.nan, 3], [1, np.nan, 6], [7, 8, 9]]
        >>> df = pd.DataFrame(
        ...     data, columns=["a", "b", "c"], index=["cow", "horse", "bull"]
        ... )
        >>> df
                a	  b	c
        cow     1	NaN	3
        horse	1	NaN	6
        bull	7	8.0	9
        >>> df.groupby("a").count()
            b   c
        a
        1   0   2
        7   1   1

        For Resampler:

        >>> ser = pd.Series(
        ...     [1, 2, 3, 4],
        ...     index=pd.DatetimeIndex(
        ...         ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"]
        ...     ),
        ... )
        >>> ser
        2023-01-01    1
        2023-01-15    2
        2023-02-01    3
        2023-02-15    4
        dtype: int64
        >>> ser.resample("MS").count()
        2023-01-01    2
        2023-02-01    2
        Freq: MS, dtype: int64
        """
        data = self._get_data_to_aggregate()
        ids = self._grouper.ids
        ngroups = self._grouper.ngroups
        mask = ids != -1

        is_series = data.ndim == 1

        def hfunc(bvalues: ArrayLike) -> ArrayLike:
            # TODO(EA2D): reshape would not be necessary with 2D EAs
            if bvalues.ndim == 1:
                # EA
                masked = mask & ~isna(bvalues).reshape(1, -1)
            else:
                masked = mask & ~isna(bvalues)

            counted = lib.count_level_2d(masked, labels=ids, max_bin=ngroups)
            if isinstance(bvalues, BaseMaskedArray):
                return IntegerArray(
                    counted[0], mask=np.zeros(counted.shape[1], dtype=np.bool_)
                )
            elif isinstance(bvalues, ArrowExtensionArray) and not isinstance(
                bvalues.dtype, StringDtype
            ):
                dtype = pandas_dtype("int64[pyarrow]")
                return type(bvalues)._from_sequence(counted[0], dtype=dtype)
            if is_series:
                assert counted.ndim == 2
                assert counted.shape[0] == 1
                return counted[0]
            return counted

        new_mgr = data.grouped_reduce(hfunc)
        new_obj = self._wrap_agged_manager(new_mgr)
        result = self._wrap_aggregated_output(new_obj)

        return result

    @final
    def mean(
        self,
        numeric_only: bool = False,
        skipna: bool = True,
        engine: Literal["cython", "numba"] | None = None,
        engine_kwargs: dict[str, bool] | None = None,
    ):
        """
        Compute mean of groups, excluding missing values.

        Parameters
        ----------
        numeric_only : bool, default False
            Include only float, int, boolean columns.

            .. versionchanged:: 2.0.0

                numeric_only no longer accepts ``None`` and defaults to ``False``.

        skipna : bool, default True
            Exclude NA/null values. If an entire group is NA, the result will be NA.

        engine : str, default None
            * ``'cython'`` : Runs the operation through C-extensions from cython.
            * ``'numba'`` : Runs the operation through JIT compiled code from numba.
            * ``None`` : Defaults to ``'cython'`` or globally setting
              ``compute.use_numba``

        engine_kwargs : dict, default None
            * For ``'cython'`` engine, there are no accepted ``engine_kwargs``
            * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
              and ``parallel`` dictionary keys. The values must either be ``True`` or
              ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
              ``{{'nopython': True, 'nogil': False, 'parallel': False}}``

        Returns
        -------
        pandas.Series or pandas.DataFrame
            Mean of values within each group. Same object type as the caller.

        See Also
        --------
        Series.mean : Apply function mean to a Series.
        DataFrame.mean : Apply function mean to each row or column of a DataFrame.

        Examples
        --------
        >>> df = pd.DataFrame(
        ...     {"A": [1, 1, 2, 1, 2], "B": [np.nan, 2, 3, 4, 5], "C": [1, 2, 1, 1, 2]},
        ...     columns=["A", "B", "C"],
        ... )

        Groupby one column and return the mean of the remaining columns in
        each group.

        >>> df.groupby("A").mean()
             B         C
        A
        1  3.0  1.333333
        2  4.0  1.500000

        Groupby two columns and return the mean of the remaining column.

        >>> df.groupby(["A", "B"]).mean()
                 C
        A B
        1 2.0  2.0
          4.0  1.0
        2 3.0  1.0
          5.0  2.0

        Groupby one column and return the mean of only particular column in
        the group.

        >>> df.groupby("A")["B"].mean()
        A
        1    3.0
        2    4.0
        Name: B, dtype: float64
        """

        if maybe_use_numba(engine):
            from pandas.core._numba.kernels import grouped_mean

            return self._numba_agg_general(
                grouped_mean,
                executor.float_dtype_mapping,
                engine_kwargs,
                min_periods=0,
                skipna=skipna,
            )
        else:
            result = self._cython_agg_general(
                "mean",
                alt=lambda x: Series(x, copy=False).mean(
                    numeric_only=numeric_only, skipna=skipna
                ),
                numeric_only=numeric_only,
                skipna=skipna,
            )
            return result.__finalize__(self.obj, method="groupby")

    @final
    def median(self, numeric_only: bool = False, skipna: bool = True) -> NDFrameT:
        """
        Compute median of groups, excluding missing values.

        For multiple groupings, the result index will be a MultiIndex

        Parameters
        ----------
        numeric_only : bool, default False
            Include only float, int, boolean columns.

            .. versionchanged:: 2.0.0

                numeric_only no longer accepts ``None`` and defaults to False.

        skipna : bool, default True
            Exclude NA/null values. If an entire group is NA, the result will be NA.

            .. versionadded:: 3.0.0

        Returns
        -------
        Series or DataFrame
            Median of values within each group.

        See Also
        --------
        Series.median : Apply function median to a Series.
        DataFrame.median : Apply function median to each row or column of a DataFrame.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "a", "b", "b", "b"]
        >>> ser = pd.Series([7, 2, 8, 4, 3, 3], index=lst)
        >>> ser
        a     7
        a     2
        a     8
        b     4
        b     3
        b     3
        dtype: int64
        >>> ser.groupby(level=0).median()
        a    7.0
        b    3.0
        dtype: float64

        For DataFrameGroupBy:

        >>> data = {"a": [1, 3, 5, 7, 7, 8, 3], "b": [1, 4, 8, 4, 4, 2, 1]}
        >>> df = pd.DataFrame(
        ...     data, index=["dog", "dog", "dog", "mouse", "mouse", "mouse", "mouse"]
        ... )
        >>> df
                 a  b
          dog    1  1
          dog    3  4
          dog    5  8
        mouse    7  4
        mouse    7  4
        mouse    8  2
        mouse    3  1
        >>> df.groupby(level=0).median()
                 a    b
        dog    3.0  4.0
        mouse  7.0  3.0

        For Resampler:

        >>> ser = pd.Series(
        ...     [1, 2, 3, 3, 4, 5],
        ...     index=pd.DatetimeIndex(
        ...         [
        ...             "2023-01-01",
        ...             "2023-01-10",
        ...             "2023-01-15",
        ...             "2023-02-01",
        ...             "2023-02-10",
        ...             "2023-02-15",
        ...         ]
        ...     ),
        ... )
        >>> ser.resample("MS").median()
        2023-01-01    2.0
        2023-02-01    4.0
        Freq: MS, dtype: float64
        """
        result = self._cython_agg_general(
            "median",
            alt=lambda x: Series(x, copy=False).median(
                numeric_only=numeric_only, skipna=skipna
            ),
            numeric_only=numeric_only,
            skipna=skipna,
        )
        return result.__finalize__(self.obj, method="groupby")

    @final
    def std(
        self,
        ddof: int = 1,
        engine: Literal["cython", "numba"] | None = None,
        engine_kwargs: dict[str, bool] | None = None,
        numeric_only: bool = False,
        skipna: bool = True,
    ):
        """
        Compute standard deviation of groups, excluding missing values.

        For multiple groupings, the result index will be a MultiIndex.

        Parameters
        ----------
        ddof : int, default 1
            Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``,
            where ``N`` represents the number of elements.

        engine : str, default None
            * ``'cython'`` : Runs the operation through C-extensions from cython.
            * ``'numba'`` : Runs the operation through JIT compiled code from numba.
            * ``None`` : Defaults to ``'cython'`` or globally setting
              ``compute.use_numba``

        engine_kwargs : dict, default None
            * For ``'cython'`` engine, there are no accepted ``engine_kwargs``
            * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
              and ``parallel`` dictionary keys. The values must either be ``True`` or
              ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
              ``{{'nopython': True, 'nogil': False, 'parallel': False}}``

        numeric_only : bool, default False
            Include only `float`, `int` or `boolean` data.

            .. versionchanged:: 2.0.0

                numeric_only now defaults to ``False``.

        skipna : bool, default True
            Exclude NA/null values. If an entire group is NA, the result will be NA.

            .. versionadded:: 3.0.0

        Returns
        -------
        Series or DataFrame
            Standard deviation of values within each group.

        See Also
        --------
        Series.std : Apply function std to a Series.
        DataFrame.std : Apply function std to each row or column of a DataFrame.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "a", "b", "b", "b"]
        >>> ser = pd.Series([7, 2, 8, 4, 3, 3], index=lst)
        >>> ser
        a     7
        a     2
        a     8
        b     4
        b     3
        b     3
        dtype: int64
        >>> ser.groupby(level=0).std()
        a    3.21455
        b    0.57735
        dtype: float64

        For DataFrameGroupBy:

        >>> data = {"a": [1, 3, 5, 7, 7, 8, 3], "b": [1, 4, 8, 4, 4, 2, 1]}
        >>> df = pd.DataFrame(
        ...     data, index=["dog", "dog", "dog", "mouse", "mouse", "mouse", "mouse"]
        ... )
        >>> df
                 a  b
          dog    1  1
          dog    3  4
          dog    5  8
        mouse    7  4
        mouse    7  4
        mouse    8  2
        mouse    3  1
        >>> df.groupby(level=0).std()
                      a         b
        dog    2.000000  3.511885
        mouse  2.217356  1.500000
        """
        if maybe_use_numba(engine):
            from pandas.core._numba.kernels import grouped_var

            return np.sqrt(
                self._numba_agg_general(
                    grouped_var,
                    executor.float_dtype_mapping,
                    engine_kwargs,
                    min_periods=0,
                    ddof=ddof,
                    skipna=skipna,
                )
            )
        else:
            return self._cython_agg_general(
                "std",
                alt=lambda x: Series(x, copy=False).std(ddof=ddof, skipna=skipna),
                numeric_only=numeric_only,
                ddof=ddof,
                skipna=skipna,
            )

    @final
    def var(
        self,
        ddof: int = 1,
        engine: Literal["cython", "numba"] | None = None,
        engine_kwargs: dict[str, bool] | None = None,
        numeric_only: bool = False,
        skipna: bool = True,
    ):
        """
        Compute variance of groups, excluding missing values.

        For multiple groupings, the result index will be a MultiIndex.

        Parameters
        ----------
        ddof : int, default 1
            Degrees of freedom.

        engine : str, default None
            * ``'cython'`` : Runs the operation through C-extensions from cython.
            * ``'numba'`` : Runs the operation through JIT compiled code from numba.
            * ``None`` : Defaults to ``'cython'`` or globally setting
              ``compute.use_numba``

        engine_kwargs : dict, default None
            * For ``'cython'`` engine, there are no accepted ``engine_kwargs``
            * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
              and ``parallel`` dictionary keys. The values must either be ``True`` or
              ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
              ``{{'nopython': True, 'nogil': False, 'parallel': False}}``

        numeric_only : bool, default False
            Include only `float`, `int` or `boolean` data.

            .. versionchanged:: 2.0.0

                numeric_only now defaults to ``False``.

        skipna : bool, default True
            Exclude NA/null values. If an entire group is NA, the result will be NA.

            .. versionadded:: 3.0.0

        Returns
        -------
        Series or DataFrame
            Variance of values within each group.

        See Also
        --------
        Series.var : Apply function var to a Series.
        DataFrame.var : Apply function var to each row or column of a DataFrame.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "a", "b", "b", "b"]
        >>> ser = pd.Series([7, 2, 8, 4, 3, 3], index=lst)
        >>> ser
        a     7
        a     2
        a     8
        b     4
        b     3
        b     3
        dtype: int64
        >>> ser.groupby(level=0).var()
        a    10.333333
        b     0.333333
        dtype: float64

        For DataFrameGroupBy:

        >>> data = {"a": [1, 3, 5, 7, 7, 8, 3], "b": [1, 4, 8, 4, 4, 2, 1]}
        >>> df = pd.DataFrame(
        ...     data, index=["dog", "dog", "dog", "mouse", "mouse", "mouse", "mouse"]
        ... )
        >>> df
                 a  b
          dog    1  1
          dog    3  4
          dog    5  8
        mouse    7  4
        mouse    7  4
        mouse    8  2
        mouse    3  1
        >>> df.groupby(level=0).var()
                      a          b
        dog    4.000000  12.333333
        mouse  4.916667   2.250000
        """
        if maybe_use_numba(engine):
            from pandas.core._numba.kernels import grouped_var

            return self._numba_agg_general(
                grouped_var,
                executor.float_dtype_mapping,
                engine_kwargs,
                min_periods=0,
                ddof=ddof,
                skipna=skipna,
            )
        else:
            return self._cython_agg_general(
                "var",
                alt=lambda x: Series(x, copy=False).var(ddof=ddof, skipna=skipna),
                numeric_only=numeric_only,
                ddof=ddof,
                skipna=skipna,
            )

    @final
    def _value_counts(
        self,
        subset: Sequence[Hashable] | None = None,
        normalize: bool = False,
        sort: bool = True,
        ascending: bool = False,
        dropna: bool = True,
    ) -> DataFrame | Series:
        """
        Shared implementation of value_counts for SeriesGroupBy and DataFrameGroupBy.

        SeriesGroupBy additionally supports a bins argument. See the docstring of
        DataFrameGroupBy.value_counts for a description of arguments.
        """
        name = "proportion" if normalize else "count"

        df = self.obj
        obj = self._obj_with_exclusions

        in_axis_names = {
            grouping.name for grouping in self._grouper.groupings if grouping.in_axis
        }
        if isinstance(obj, Series):
            _name = obj.name
            keys: Iterable[Series] = [] if _name in in_axis_names else [obj]
        else:
            unique_cols = set(obj.columns)
            if subset is not None:
                subsetted = set(subset)
                clashing = subsetted & set(in_axis_names)
                if clashing:
                    raise ValueError(
                        f"Keys {clashing} in subset cannot be in "
                        "the groupby column keys."
                    )
                doesnt_exist = subsetted - unique_cols
                if doesnt_exist:
                    raise ValueError(
                        f"Keys {doesnt_exist} in subset do not exist in the DataFrame."
                    )
            else:
                subsetted = unique_cols

            keys = (
                # Can't use .values because the column label needs to be preserved
                obj.iloc[:, idx]
                for idx, _name in enumerate(obj.columns)
                if _name not in in_axis_names and _name in subsetted
            )

        groupings = list(self._grouper.groupings)
        for key in keys:
            grouper, _, _ = get_grouper(
                df,
                key=key,
                sort=False,
                observed=False,
                dropna=dropna,
            )
            groupings += list(grouper.groupings)

        # Take the size of the overall columns
        gb = df.groupby(
            groupings,
            sort=False,
            observed=self.observed,
            dropna=self.dropna,
        )
        result_series = cast(Series, gb.size())
        result_series.name = name

        if sort:
            # Sort by the values
            result_series = result_series.sort_values(
                ascending=ascending, kind="stable"
            )
        if self.sort:
            # Sort by the groupings
            names = result_series.index.names
            # GH#55951 - Temporarily replace names in case they are integers
            result_series.index.names = range(len(names))
            index_level = range(len(self._grouper.groupings))
            result_series = result_series.sort_index(
                level=index_level, sort_remaining=False
            )
            result_series.index.names = names

        if normalize:
            # Normalize the results by dividing by the original group sizes.
            # We are guaranteed to have the first N levels be the
            # user-requested grouping.
            levels = list(
                range(len(self._grouper.groupings), result_series.index.nlevels)
            )
            indexed_group_size = result_series.groupby(
                result_series.index.droplevel(levels),
                sort=self.sort,
                dropna=self.dropna,
                # GH#43999 - deprecation of observed=False
                observed=False,
            ).transform("sum")
            result_series /= indexed_group_size

            # Handle groups of non-observed categories
            result_series = result_series.fillna(0.0)

        result: Series | DataFrame
        if self.as_index:
            result = result_series
        else:
            # Convert to frame
            index = result_series.index
            columns = com.fill_missing_names(index.names)
            if name in columns:
                raise ValueError(f"Column label '{name}' is duplicate of result column")
            result_series.name = name
            result_series.index = index.set_names(range(len(columns)))
            result_frame = result_series.reset_index()
            orig_dtype = self._grouper.groupings[0].obj.columns.dtype  # type: ignore[union-attr]
            cols = Index(columns, dtype=orig_dtype).insert(len(columns), name)
            result_frame.columns = cols
            result = result_frame
        return result.__finalize__(self.obj, method="value_counts")

    @final
    def sem(
        self, ddof: int = 1, numeric_only: bool = False, skipna: bool = True
    ) -> NDFrameT:
        """
        Compute standard error of the mean of groups, excluding missing values.

        For multiple groupings, the result index will be a MultiIndex.

        Parameters
        ----------
        ddof : int, default 1
            Degrees of freedom.

        numeric_only : bool, default False
            Include only `float`, `int` or `boolean` data.

            .. versionchanged:: 2.0.0

                numeric_only now defaults to ``False``.

        skipna : bool, default True
            Exclude NA/null values. If an entire group is NA, the result will be NA.

            .. versionadded:: 3.0.0

        Returns
        -------
        Series or DataFrame
            Standard error of the mean of values within each group.

        See Also
        --------
        DataFrame.sem : Return unbiased standard error of the mean over requested axis.
        Series.sem : Return unbiased standard error of the mean over requested axis.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "b", "b"]
        >>> ser = pd.Series([5, 10, 8, 14], index=lst)
        >>> ser
        a     5
        a    10
        b     8
        b    14
        dtype: int64
        >>> ser.groupby(level=0).sem()
        a    2.5
        b    3.0
        dtype: float64

        For DataFrameGroupBy:

        >>> data = [[1, 12, 11], [1, 15, 2], [2, 5, 8], [2, 6, 12]]
        >>> df = pd.DataFrame(
        ...     data,
        ...     columns=["a", "b", "c"],
        ...     index=["tuna", "salmon", "catfish", "goldfish"],
        ... )
        >>> df
                   a   b   c
            tuna   1  12  11
          salmon   1  15   2
         catfish   2   5   8
        goldfish   2   6  12
        >>> df.groupby("a").sem()
              b  c
        a
        1    1.5  4.5
        2    0.5  2.0

        For Resampler:

        >>> ser = pd.Series(
        ...     [1, 3, 2, 4, 3, 8],
        ...     index=pd.DatetimeIndex(
        ...         [
        ...             "2023-01-01",
        ...             "2023-01-10",
        ...             "2023-01-15",
        ...             "2023-02-01",
        ...             "2023-02-10",
        ...             "2023-02-15",
        ...         ]
        ...     ),
        ... )
        >>> ser.resample("MS").sem()
        2023-01-01    0.577350
        2023-02-01    1.527525
        Freq: MS, dtype: float64
        """
        if numeric_only and self.obj.ndim == 1 and not is_numeric_dtype(self.obj.dtype):
            raise TypeError(
                f"{type(self).__name__}.sem called with "
                f"numeric_only={numeric_only} and dtype {self.obj.dtype}"
            )
        return self._cython_agg_general(
            "sem",
            alt=lambda x: Series(x, copy=False).sem(ddof=ddof, skipna=skipna),
            numeric_only=numeric_only,
            ddof=ddof,
            skipna=skipna,
        )

    @final
    def size(self) -> DataFrame | Series:
        """
        Compute group sizes.

        Returns
        -------
        DataFrame or Series
            Number of rows in each group as a Series if as_index is True
            or a DataFrame if as_index is False.

        See Also
        --------
        Series.size : Apply function size to a Series.
        DataFrame.size : Apply function size to each row or column of a DataFrame.

        Examples
        --------

        For SeriesGroupBy:

        >>> lst = ["a", "a", "b"]
        >>> ser = pd.Series([1, 2, 3], index=lst)
        >>> ser
        a     1
        a     2
        b     3
        dtype: int64
        >>> ser.groupby(level=0).size()
        a    2
        b    1
        dtype: int64

        >>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]]
        >>> df = pd.DataFrame(
        ...     data, columns=["a", "b", "c"], index=["owl", "toucan", "eagle"]
        ... )
        >>> df
                a  b  c
        owl     1  2  3
        toucan  1  5  6
        eagle   7  8  9
        >>> df.groupby("a").size()
        a
        1    2
        7    1
        dtype: int64

        For Resampler:

        >>> ser = pd.Series(
        ...     [1, 2, 3],
        ...     index=pd.DatetimeIndex(["2023-01-01", "2023-01-15", "2023-02-01"]),
        ... )
        >>> ser
        2023-01-01    1
        2023-01-15    2
        2023-02-01    3
        dtype: int64
        >>> ser.resample("MS").size()
        2023-01-01    2
        2023-02-01    1
        Freq: MS, dtype: int64
        """
        result = self._grouper.size()
        dtype_backend: None | Literal["pyarrow", "numpy_nullable"] = None
        if isinstance(self.obj, Series):
            if isinstance(self.obj.array, ArrowExtensionArray):
                if isinstance(self.obj.array, ArrowStringArray):
                    if self.obj.array.dtype.na_value is np.nan:
                        dtype_backend = None
                    else:
                        dtype_backend = "numpy_nullable"
                else:
                    dtype_backend = "pyarrow"
            elif isinstance(self.obj.array, BaseMaskedArray):
                dtype_backend = "numpy_nullable"
        # TODO: For DataFrames what if columns are mixed arrow/numpy/masked?

        # GH28330 preserve subclassed Series/DataFrames through calls
        if isinstance(self.obj, Series):
            result = self._obj_1d_constructor(result, name=self.obj.name)
        else:
            result = self._obj_1d_constructor(result)

        if dtype_backend is not None:
            result = result.convert_dtypes(
                infer_objects=False,
                convert_string=False,
                convert_boolean=False,
                convert_floating=False,
                dtype_backend=dtype_backend,
            )

        if not self.as_index:
            result = result.rename("size").reset_index()
        return result

    @final
    def sum(
        self,
        numeric_only: bool = False,
        min_count: int = 0,
        skipna: bool = True,
        engine: Literal["cython", "numba"] | None = None,
        engine_kwargs: dict[str, bool] | None = None,
    ):
        """
        Compute sum of group values.

        Parameters
        ----------
        numeric_only : bool, default False
            Include only float, int, boolean columns.

            .. versionchanged:: 2.0.0

                numeric_only no longer accepts ``None``.

        min_count : int, default 0
            The required number of valid values to perform the operation. If fewer
            than ``min_count`` non-NA values are present the result will be NA.

        skipna : bool, default True
            Exclude NA/null values. If the entire group is NA and ``skipna`` is
            ``True``, the result will be NA.

            .. versionchanged:: 3.0.0

        engine : str, default None None
            * ``'cython'`` : Runs rolling apply through C-extensions from cython.
            * ``'numba'`` : Runs rolling apply through JIT compiled code from numba.
                Only available when ``raw`` is set to ``True``.
            * ``None`` : Defaults to ``'cython'`` or globally setting
                ``compute.use_numba``

        engine_kwargs : dict, default None None
            * For ``'cython'`` engine, there are no accepted ``engine_kwargs``
            * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
                and ``parallel`` dictionary keys. The values must either be ``True`` or
                ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
                ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be
                applied to both the ``func`` and the ``apply`` groupby aggregation.

        Returns
        -------
        Series or DataFrame
            Computed sum of values within each group.

        See Also
        --------
        SeriesGroupBy.min : Return the min of the group values.
        DataFrameGroupBy.min : Return the min of the group values.
        SeriesGroupBy.max : Return the max of the group values.
        DataFrameGroupBy.max : Return the max of the group values.
        SeriesGroupBy.sum : Return the sum of the group values.
        DataFrameGroupBy.sum : Return the sum of the group values.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "b", "b"]
        >>> ser = pd.Series([1, 2, 3, 4], index=lst)
        >>> ser
        a    1
        a    2
        b    3
        b    4
        dtype: int64
        >>> ser.groupby(level=0).sum()
        a    3
        b    7
        dtype: int64

        For DataFrameGroupBy:

        >>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]]
        >>> df = pd.DataFrame(
        ...     data,
        ...     columns=["a", "b", "c"],
        ...     index=["tiger", "leopard", "cheetah", "lion"],
        ... )
        >>> df
                  a  b  c
          tiger   1  8  2
        leopard   1  2  5
        cheetah   2  5  8
           lion   2  6  9
        >>> df.groupby("a").sum()
             b   c
        a
        1   10   7
        2   11  17
        """
        if maybe_use_numba(engine):
            from pandas.core._numba.kernels import grouped_sum

            return self._numba_agg_general(
                grouped_sum,
                executor.default_dtype_mapping,
                engine_kwargs,
                min_periods=min_count,
                skipna=skipna,
            )
        else:
            # If we are grouping on categoricals we want unobserved categories to
            # return zero, rather than the default of NaN which the reindexing in
            # _agg_general() returns. GH #31422
            with com.temp_setattr(self, "observed", True):
                result = self._agg_general(
                    numeric_only=numeric_only,
                    min_count=min_count,
                    alias="sum",
                    npfunc=np.sum,
                    skipna=skipna,
                )

            return result

    @final
    def prod(
        self, numeric_only: bool = False, min_count: int = 0, skipna: bool = True
    ) -> NDFrameT:
        """
        Compute prod of group values.

        Parameters
        ----------
        numeric_only : bool, default False
            Include only float, int, boolean columns.

            .. versionchanged:: 2.0.0

                numeric_only no longer accepts ``None``.

        min_count : int, default 0
            The required number of valid values to perform the operation. If fewer
            than ``min_count`` non-NA values are present the result will be NA.

        skipna : bool, default True
            Exclude NA/null values. If an entire group is NA, the result will be NA.

            .. versionadded:: 3.0.0

        Returns
        -------
        Series or DataFrame
            Computed prod of values within each group.

        See Also
        --------
        Series.prod : Return the product of the values over the requested axis.
        DataFrame.prod : Return the product of the values over the requested axis.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "b", "b"]
        >>> ser = pd.Series([1, 2, 3, 4], index=lst)
        >>> ser
        a    1
        a    2
        b    3
        b    4
        dtype: int64
        >>> ser.groupby(level=0).prod()
        a    2
        b   12
        dtype: int64

        For DataFrameGroupBy:

        >>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]]
        >>> df = pd.DataFrame(
        ...     data,
        ...     columns=["a", "b", "c"],
        ...     index=["tiger", "leopard", "cheetah", "lion"],
        ... )
        >>> df
                  a  b  c
          tiger   1  8  2
        leopard   1  2  5
        cheetah   2  5  8
           lion   2  6  9
        >>> df.groupby("a").prod()
             b    c
        a
        1   16   10
        2   30   72
        """
        return self._agg_general(
            numeric_only=numeric_only,
            min_count=min_count,
            skipna=skipna,
            alias="prod",
            npfunc=np.prod,
        )

    @final
    def min(
        self,
        numeric_only: bool = False,
        min_count: int = -1,
        skipna: bool = True,
        engine: Literal["cython", "numba"] | None = None,
        engine_kwargs: dict[str, bool] | None = None,
    ):
        """
        Compute min of group values.

        Parameters
        ----------
        numeric_only : bool, default False
            Include only float, int, boolean columns.

            .. versionchanged:: 2.0.0

                numeric_only no longer accepts ``None``.

        min_count : int, default -1
            The required number of valid values to perform the operation. If fewer
            than ``min_count`` non-NA values are present the result will be NA.

        skipna : bool, default True
            Exclude NA/null values. If the entire group is NA and ``skipna`` is
            ``True``, the result will be NA.

            .. versionchanged:: 3.0.0

        engine : str, default None None
            * ``'cython'`` : Runs rolling apply through C-extensions from cython.
            * ``'numba'`` : Runs rolling apply through JIT compiled code from numba.
                Only available when ``raw`` is set to ``True``.
            * ``None`` : Defaults to ``'cython'`` or globally setting
                ``compute.use_numba``

        engine_kwargs : dict, default None None
            * For ``'cython'`` engine, there are no accepted ``engine_kwargs``
            * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
                and ``parallel`` dictionary keys. The values must either be ``True`` or
                ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
                ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be
                applied to both the ``func`` and the ``apply`` groupby aggregation.

        Returns
        -------
        Series or DataFrame
            Computed min of values within each group.

        See Also
        --------
        SeriesGroupBy.min : Return the min of the group values.
        DataFrameGroupBy.min : Return the min of the group values.
        SeriesGroupBy.max : Return the max of the group values.
        DataFrameGroupBy.max : Return the max of the group values.
        SeriesGroupBy.sum : Return the sum of the group values.
        DataFrameGroupBy.sum : Return the sum of the group values.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "b", "b"]
        >>> ser = pd.Series([1, 2, 3, 4], index=lst)
        >>> ser
        a    1
        a    2
        b    3
        b    4
        dtype: int64
        >>> ser.groupby(level=0).min()
        a    1
        b    3
        dtype: int64

        For DataFrameGroupBy:

        >>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]]
        >>> df = pd.DataFrame(
        ...     data,
        ...     columns=["a", "b", "c"],
        ...     index=["tiger", "leopard", "cheetah", "lion"],
        ... )
        >>> df
                  a  b  c
          tiger   1  8  2
        leopard   1  2  5
        cheetah   2  5  8
           lion   2  6  9
        >>> df.groupby("a").min()
            b  c
        a
        1   2  2
        2   5  8
        """
        if maybe_use_numba(engine):
            from pandas.core._numba.kernels import grouped_min_max

            return self._numba_agg_general(
                grouped_min_max,
                executor.identity_dtype_mapping,
                engine_kwargs,
                min_periods=min_count,
                is_max=False,
                skipna=skipna,
            )
        else:
            return self._agg_general(
                numeric_only=numeric_only,
                min_count=min_count,
                skipna=skipna,
                alias="min",
                npfunc=np.min,
            )

    @final
    def max(
        self,
        numeric_only: bool = False,
        min_count: int = -1,
        skipna: bool = True,
        engine: Literal["cython", "numba"] | None = None,
        engine_kwargs: dict[str, bool] | None = None,
    ):
        """
        Compute max of group values.

        Parameters
        ----------
        numeric_only : bool, default False
            Include only float, int, boolean columns.

            .. versionchanged:: 2.0.0

                numeric_only no longer accepts ``None``.

        min_count : int, default -1
            The required number of valid values to perform the operation. If fewer
            than ``min_count`` non-NA values are present the result will be NA.

        skipna : bool, default True
            Exclude NA/null values. If the entire group is NA and ``skipna`` is
            ``True``, the result will be NA.

            .. versionchanged:: 3.0.0

        engine : str, default None None
            * ``'cython'`` : Runs rolling apply through C-extensions from cython.
            * ``'numba'`` : Runs rolling apply through JIT compiled code from numba.
                Only available when ``raw`` is set to ``True``.
            * ``None`` : Defaults to ``'cython'`` or globally setting
                ``compute.use_numba``

        engine_kwargs : dict, default None None
            * For ``'cython'`` engine, there are no accepted ``engine_kwargs``
            * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
                and ``parallel`` dictionary keys. The values must either be ``True`` or
                ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
                ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be
                applied to both the ``func`` and the ``apply`` groupby aggregation.

        Returns
        -------
        Series or DataFrame
            Computed max of values within each group.

        See Also
        --------
        SeriesGroupBy.min : Return the min of the group values.
        DataFrameGroupBy.min : Return the min of the group values.
        SeriesGroupBy.max : Return the max of the group values.
        DataFrameGroupBy.max : Return the max of the group values.
        SeriesGroupBy.sum : Return the sum of the group values.
        DataFrameGroupBy.sum : Return the sum of the group values.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "b", "b"]
        >>> ser = pd.Series([1, 2, 3, 4], index=lst)
        >>> ser
        a    1
        a    2
        b    3
        b    4
        dtype: int64
        >>> ser.groupby(level=0).max()
        a    2
        b    4
        dtype: int64

        For DataFrameGroupBy:

        >>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]]
        >>> df = pd.DataFrame(
        ...     data,
        ...     columns=["a", "b", "c"],
        ...     index=["tiger", "leopard", "cheetah", "lion"],
        ... )
        >>> df
                  a  b  c
          tiger   1  8  2
        leopard   1  2  5
        cheetah   2  5  8
           lion   2  6  9
        >>> df.groupby("a").max()
            b  c
        a
        1   8  5
        2   6  9
        """
        if maybe_use_numba(engine):
            from pandas.core._numba.kernels import grouped_min_max

            return self._numba_agg_general(
                grouped_min_max,
                executor.identity_dtype_mapping,
                engine_kwargs,
                min_periods=min_count,
                is_max=True,
                skipna=skipna,
            )
        else:
            return self._agg_general(
                numeric_only=numeric_only,
                min_count=min_count,
                skipna=skipna,
                alias="max",
                npfunc=np.max,
            )

    @final
    def first(
        self, numeric_only: bool = False, min_count: int = -1, skipna: bool = True
    ) -> NDFrameT:
        """
        Compute the first entry of each column within each group.

        Defaults to skipping NA elements.

        Parameters
        ----------
        numeric_only : bool, default False
            Include only float, int, boolean columns.
        min_count : int, default -1
            The required number of valid values to perform the operation. If fewer
            than ``min_count`` valid values are present the result will be NA.
        skipna : bool, default True
            Exclude NA/null values. If an entire group is NA, the result will be NA.

            .. versionadded:: 2.2.1

        Returns
        -------
        Series or DataFrame
            First values within each group.

        See Also
        --------
        DataFrame.groupby : Apply a function groupby to each row or column of a
            DataFrame.
        core.groupby.DataFrameGroupBy.last : Compute the last non-null entry
            of each column.
        core.groupby.DataFrameGroupBy.nth : Take the nth row from each group.

        Examples
        --------
        >>> df = pd.DataFrame(
        ...     dict(
        ...         A=[1, 1, 3],
        ...         B=[None, 5, 6],
        ...         C=[1, 2, 3],
        ...         D=["3/11/2000", "3/12/2000", "3/13/2000"],
        ...     )
        ... )
        >>> df["D"] = pd.to_datetime(df["D"])
        >>> df.groupby("A").first()
             B  C          D
        A
        1  5.0  1 2000-03-11
        3  6.0  3 2000-03-13
        >>> df.groupby("A").first(min_count=2)
            B    C          D
        A
        1 NaN  1.0 2000-03-11
        3 NaN  NaN        NaT
        >>> df.groupby("A").first(numeric_only=True)
             B  C
        A
        1  5.0  1
        3  6.0  3
        """

        def first_compat(obj: NDFrameT):
            def first(x: Series):
                """Helper function for first item that isn't NA."""
                arr = x.array[notna(x.array)]
                if not len(arr):
                    return x.array.dtype.na_value
                return arr[0]

            if isinstance(obj, DataFrame):
                return obj.apply(first)
            elif isinstance(obj, Series):
                return first(obj)
            else:  # pragma: no cover
                raise TypeError(type(obj))

        return self._agg_general(
            numeric_only=numeric_only,
            min_count=min_count,
            alias="first",
            npfunc=first_compat,
            skipna=skipna,
        )

    @final
    def last(
        self, numeric_only: bool = False, min_count: int = -1, skipna: bool = True
    ) -> NDFrameT:
        """
        Compute the last entry of each column within each group.

        Defaults to skipping NA elements.

        Parameters
        ----------
        numeric_only : bool, default False
            Include only float, int, boolean columns. If None, will attempt to use
            everything, then use only numeric data.
        min_count : int, default -1
            The required number of valid values to perform the operation. If fewer
            than ``min_count`` valid values are present the result will be NA.
        skipna : bool, default True
            Exclude NA/null values. If an entire group is NA, the result will be NA.

            .. versionadded:: 2.2.1

        Returns
        -------
        Series or DataFrame
            Last of values within each group.

        See Also
        --------
        DataFrame.groupby : Apply a function groupby to each row or column of a
            DataFrame.
        core.groupby.DataFrameGroupBy.first : Compute the first non-null entry
            of each column.
        core.groupby.DataFrameGroupBy.nth : Take the nth row from each group.

        Examples
        --------
        >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[5, None, 6], C=[1, 2, 3]))
        >>> df.groupby("A").last()
             B  C
        A
        1  5.0  2
        3  6.0  3
        """

        def last_compat(obj: NDFrameT):
            def last(x: Series):
                """Helper function for last item that isn't NA."""
                arr = x.array[notna(x.array)]
                if not len(arr):
                    return x.array.dtype.na_value
                return arr[-1]

            if isinstance(obj, DataFrame):
                return obj.apply(last)
            elif isinstance(obj, Series):
                return last(obj)
            else:  # pragma: no cover
                raise TypeError(type(obj))

        return self._agg_general(
            numeric_only=numeric_only,
            min_count=min_count,
            alias="last",
            npfunc=last_compat,
            skipna=skipna,
        )

    @final
    def ohlc(self) -> DataFrame:
        """
        Compute open, high, low and close values of a group, excluding missing values.

        For multiple groupings, the result index will be a MultiIndex

        Returns
        -------
        DataFrame
            Open, high, low and close values within each group.

        See Also
        --------
        DataFrame.agg : Aggregate using one or more operations over the specified axis.
        DataFrame.resample : Resample time-series data.
        DataFrame.groupby : Group DataFrame using a mapper or by a Series of columns.

        Examples
        --------

        For SeriesGroupBy:

        >>> lst = [
        ...     "SPX",
        ...     "CAC",
        ...     "SPX",
        ...     "CAC",
        ...     "SPX",
        ...     "CAC",
        ...     "SPX",
        ...     "CAC",
        ... ]
        >>> ser = pd.Series([3.4, 9.0, 7.2, 5.2, 8.8, 9.4, 0.1, 0.5], index=lst)
        >>> ser
        SPX     3.4
        CAC     9.0
        SPX     7.2
        CAC     5.2
        SPX     8.8
        CAC     9.4
        SPX     0.1
        CAC     0.5
        dtype: float64
        >>> ser.groupby(level=0).ohlc()
             open  high  low  close
        CAC   9.0   9.4  0.5    0.5
        SPX   3.4   8.8  0.1    0.1

        For DataFrameGroupBy:

        >>> data = {
        ...     2022: [1.2, 2.3, 8.9, 4.5, 4.4, 3, 2, 1],
        ...     2023: [3.4, 9.0, 7.2, 5.2, 8.8, 9.4, 8.2, 1.0],
        ... }
        >>> df = pd.DataFrame(
        ...     data, index=["SPX", "CAC", "SPX", "CAC", "SPX", "CAC", "SPX", "CAC"]
        ... )
        >>> df
             2022  2023
        SPX   1.2   3.4
        CAC   2.3   9.0
        SPX   8.9   7.2
        CAC   4.5   5.2
        SPX   4.4   8.8
        CAC   3.0   9.4
        SPX   2.0   8.2
        CAC   1.0   1.0
        >>> df.groupby(level=0).ohlc()
            2022                 2023
            open high  low close open high  low close
        CAC  2.3  4.5  1.0   1.0  9.0  9.4  1.0   1.0
        SPX  1.2  8.9  1.2   2.0  3.4  8.8  3.4   8.2

        For Resampler:

        >>> ser = pd.Series(
        ...     [1, 3, 2, 4, 3, 5],
        ...     index=pd.DatetimeIndex(
        ...         [
        ...             "2023-01-01",
        ...             "2023-01-10",
        ...             "2023-01-15",
        ...             "2023-02-01",
        ...             "2023-02-10",
        ...             "2023-02-15",
        ...         ]
        ...     ),
        ... )
        >>> ser.resample("MS").ohlc()
                    open  high  low  close
        2023-01-01     1     3    1      2
        2023-02-01     4     5    3      5
        """
        if self.obj.ndim == 1:
            obj = self._selected_obj

            is_numeric = is_numeric_dtype(obj.dtype)
            if not is_numeric:
                raise DataError("No numeric types to aggregate")

            res_values = self._grouper._cython_operation(
                "aggregate", obj._values, "ohlc", axis=0, min_count=-1
            )

            agg_names = ["open", "high", "low", "close"]
            result = self.obj._constructor_expanddim(
                res_values, index=self._grouper.result_index, columns=agg_names
            )
            return result

        result = self._apply_to_column_groupbys(lambda sgb: sgb.ohlc())
        return result

    def describe(
        self,
        percentiles=None,
        include=None,
        exclude=None,
    ) -> NDFrameT:
        """
        Generate descriptive statistics.

        Descriptive statistics include those that summarize the central
        tendency, dispersion and shape of a
        dataset's distribution, excluding ``NaN`` values.

        Analyzes both numeric and object series, as well
        as ``DataFrame`` column sets of mixed data types. The output
        will vary depending on what is provided. Refer to the notes
        below for more detail.

        Parameters
        ----------
        percentiles : list-like of numbers, optional
            The percentiles to include in the output. All should
            fall between 0 and 1. The default, ``None``, will automatically
            return the 25th, 50th, and 75th percentiles.
        include : 'all', list-like of dtypes or None (default), optional
            A white list of data types to include in the result. Ignored
            for ``Series``. Here are the options:

            - 'all' : All columns of the input will be included in the output.
            - A list-like of dtypes : Limits the results to the
              provided data types.
              To limit the result to numeric types submit
              ``numpy.number``. To limit it instead to object columns submit
              the ``numpy.object`` data type. Strings
              can also be used in the style of
              ``select_dtypes`` (e.g. ``df.describe(include=['O'])``). To
              select pandas categorical columns, use ``'category'``
            - None (default) : The result will include all numeric columns.
        exclude : list-like of dtypes or None (default), optional,
            A black list of data types to omit from the result. Ignored
            for ``Series``. Here are the options:

            - A list-like of dtypes : Excludes the provided data types
              from the result. To exclude numeric types submit
              ``numpy.number``. To exclude object columns submit the data
              type ``numpy.object``. Strings can also be used in the style of
              ``select_dtypes`` (e.g. ``df.describe(exclude=['O'])``). To
              exclude pandas categorical columns, use ``'category'``
            - None (default) : The result will exclude nothing.

        Returns
        -------
        Series or DataFrame
            Summary statistics of the Series or Dataframe provided.

        See Also
        --------
        DataFrame.count: Count number of non-NA/null observations.
        DataFrame.max: Maximum of the values in the object.
        DataFrame.min: Minimum of the values in the object.
        DataFrame.mean: Mean of the values.
        DataFrame.std: Standard deviation of the observations.
        DataFrame.select_dtypes: Subset of a DataFrame including/excluding
            columns based on their dtype.

        Notes
        -----
        For numeric data, the result's index will include ``count``,
        ``mean``, ``std``, ``min``, ``max`` as well as lower, ``50`` and
        upper percentiles. By default the lower percentile is ``25`` and the
        upper percentile is ``75``. The ``50`` percentile is the
        same as the median.

        For object data (e.g. strings), the result's index
        will include ``count``, ``unique``, ``top``, and ``freq``. The ``top``
        is the most common value. The ``freq`` is the most common value's
        frequency.

        If multiple object values have the highest count, then the
        ``count`` and ``top`` results will be arbitrarily chosen from
        among those with the highest count.

        For mixed data types provided via a ``DataFrame``, the default is to
        return only an analysis of numeric columns. If the DataFrame consists
        only of object and categorical data without any numeric columns, the
        default is to return an analysis of both the object and categorical
        columns. If ``include='all'`` is provided as an option, the result
        will include a union of attributes of each type.

        The `include` and `exclude` parameters can be used to limit
        which columns in a ``DataFrame`` are analyzed for the output.
        The parameters are ignored when analyzing a ``Series``.

        Examples
        --------
        Describing a numeric ``Series``.

        >>> s = pd.Series([1, 2, 3])
        >>> s.describe()
        count    3.0
        mean     2.0
        std      1.0
        min      1.0
        25%      1.5
        50%      2.0
        75%      2.5
        max      3.0
        dtype: float64

        Describing a categorical ``Series``.

        >>> s = pd.Series(["a", "a", "b", "c"])
        >>> s.describe()
        count     4
        unique    3
        top       a
        freq      2
        dtype: object

        Describing a timestamp ``Series``.

        >>> s = pd.Series(
        ...     [
        ...         np.datetime64("2000-01-01"),
        ...         np.datetime64("2010-01-01"),
        ...         np.datetime64("2010-01-01"),
        ...     ]
        ... )
        >>> s.describe()
        count                      3
        mean     2006-09-01 08:00:00
        min      2000-01-01 00:00:00
        25%      2004-12-31 12:00:00
        50%      2010-01-01 00:00:00
        75%      2010-01-01 00:00:00
        max      2010-01-01 00:00:00
        dtype: object

        Describing a ``DataFrame``. By default only numeric fields
        are returned.

        >>> df = pd.DataFrame(
        ...     {
        ...         "categorical": pd.Categorical(["d", "e", "f"]),
        ...         "numeric": [1, 2, 3],
        ...         "object": ["a", "b", "c"],
        ...     }
        ... )
        >>> df.describe()
               numeric
        count      3.0
        mean       2.0
        std        1.0
        min        1.0
        25%        1.5
        50%        2.0
        75%        2.5
        max        3.0

        Describing all columns of a ``DataFrame`` regardless of data type.

        >>> df.describe(include="all")  # doctest: +SKIP
               categorical  numeric object
        count            3      3.0      3
        unique           3      NaN      3
        top              f      NaN      a
        freq             1      NaN      1
        mean           NaN      2.0    NaN
        std            NaN      1.0    NaN
        min            NaN      1.0    NaN
        25%            NaN      1.5    NaN
        50%            NaN      2.0    NaN
        75%            NaN      2.5    NaN
        max            NaN      3.0    NaN

        Describing a column from a ``DataFrame`` by accessing it as
        an attribute.

        >>> df.numeric.describe()
        count    3.0
        mean     2.0
        std      1.0
        min      1.0
        25%      1.5
        50%      2.0
        75%      2.5
        max      3.0
        Name: numeric, dtype: float64

        Including only numeric columns in a ``DataFrame`` description.

        >>> df.describe(include=[np.number])
               numeric
        count      3.0
        mean       2.0
        std        1.0
        min        1.0
        25%        1.5
        50%        2.0
        75%        2.5
        max        3.0

        Including only string columns in a ``DataFrame`` description.

        >>> df.describe(include=[object])  # doctest: +SKIP
               object
        count       3
        unique      3
        top         a
        freq        1

        Including only categorical columns from a ``DataFrame`` description.

        >>> df.describe(include=["category"])
               categorical
        count            3
        unique           3
        top              d
        freq             1

        Excluding numeric columns from a ``DataFrame`` description.

        >>> df.describe(exclude=[np.number])  # doctest: +SKIP
               categorical object
        count            3      3
        unique           3      3
        top              f      a
        freq             1      1

        Excluding object columns from a ``DataFrame`` description.

        >>> df.describe(exclude=[object])  # doctest: +SKIP
               categorical  numeric
        count            3      3.0
        unique           3      NaN
        top              f      NaN
        freq             1      NaN
        mean           NaN      2.0
        std            NaN      1.0
        min            NaN      1.0
        25%            NaN      1.5
        50%            NaN      2.0
        75%            NaN      2.5
        max            NaN      3.0
        """
        obj = self._obj_with_exclusions

        if len(obj) == 0:
            described = obj.describe(
                percentiles=percentiles, include=include, exclude=exclude
            )
            if obj.ndim == 1:
                result = described
            else:
                result = described.unstack()
            return result.to_frame().T.iloc[:0]

        with com.temp_setattr(self, "as_index", True):
            result = self._python_apply_general(
                lambda x: x.describe(
                    percentiles=percentiles, include=include, exclude=exclude
                ),
                obj,
                not_indexed_same=True,
            )

        # GH#49256 - properly handle the grouping column(s)
        result = result.unstack()
        if not self.as_index:
            result = self._insert_inaxis_grouper(result)
            result.index = default_index(len(result))

        return result

    @final
    def resample(
        self, rule, *args, include_groups: bool = False, **kwargs
    ) -> Resampler:
        """
        Provide resampling when using a TimeGrouper.

        Given a grouper, the function resamples it according to a string
        "string" -> "frequency".

        See the :ref:`frequency aliases <timeseries.offset_aliases>`
        documentation for more details.

        Parameters
        ----------
        rule : str or DateOffset
            The offset string or object representing target grouper conversion.
        *args
            Possible arguments are `how`, `fill_method`, `limit`, `kind` and
            `on`, and other arguments of `TimeGrouper`.
        include_groups : bool, default True
            When True, will attempt to include the groupings in the operation in
            the case that they are columns of the DataFrame. If this raises a
            TypeError, the result will be computed with the groupings excluded.
            When False, the groupings will be excluded when applying ``func``.

            .. versionadded:: 2.2.0

            .. versionchanged:: 3.0

               The default was changed to False, and True is no longer allowed.

        **kwargs
            Possible arguments are `how`, `fill_method`, `limit`, `kind` and
            `on`, and other arguments of `TimeGrouper`.

        Returns
        -------
        DatetimeIndexResampler, PeriodIndexResampler or TimdeltaResampler
            Resampler object for the type of the index.

        See Also
        --------
        Grouper : Specify a frequency to resample with when
            grouping by a key.
        DatetimeIndex.resample : Frequency conversion and resampling of
            time series.

        Examples
        --------
        >>> idx = pd.date_range("1/1/2000", periods=4, freq="min")
        >>> df = pd.DataFrame(data=4 * [range(2)], index=idx, columns=["a", "b"])
        >>> df.iloc[2, 0] = 5
        >>> df
                            a  b
        2000-01-01 00:00:00  0  1
        2000-01-01 00:01:00  0  1
        2000-01-01 00:02:00  5  1
        2000-01-01 00:03:00  0  1

        Downsample the DataFrame into 3 minute bins and sum the values of
        the timestamps falling into a bin.

        >>> df.groupby("a").resample("3min").sum()
                                 b
        a
        0   2000-01-01 00:00:00  2
            2000-01-01 00:03:00  1
        5   2000-01-01 00:00:00  1

        Upsample the series into 30 second bins.

        >>> df.groupby("a").resample("30s").sum()
                            b
        a
        0   2000-01-01 00:00:00  1
            2000-01-01 00:00:30  0
            2000-01-01 00:01:00  1
            2000-01-01 00:01:30  0
            2000-01-01 00:02:00  0
            2000-01-01 00:02:30  0
            2000-01-01 00:03:00  1
        5   2000-01-01 00:02:00  1

        Resample by month. Values are assigned to the month of the period.

        >>> df.groupby("a").resample("ME").sum()
                    b
        a
        0   2000-01-31  3
        5   2000-01-31  1

        Downsample the series into 3 minute bins as above, but close the right
        side of the bin interval.

        >>> (df.groupby("a").resample("3min", closed="right").sum())
                                 b
        a
        0   1999-12-31 23:57:00  1
            2000-01-01 00:00:00  2
        5   2000-01-01 00:00:00  1

        Downsample the series into 3 minute bins and close the right side of
        the bin interval, but label each bin using the right edge instead of
        the left.

        >>> (df.groupby("a").resample("3min", closed="right", label="right").sum())
                                 b
        a
        0   2000-01-01 00:00:00  1
            2000-01-01 00:03:00  2
        5   2000-01-01 00:03:00  1
        """
        from pandas.core.resample import get_resampler_for_grouping

        if include_groups:
            raise ValueError("include_groups=True is no longer allowed.")

        return get_resampler_for_grouping(self, rule, *args, **kwargs)

    @final
    def rolling(
        self,
        window: int | datetime.timedelta | str | BaseOffset | BaseIndexer,
        min_periods: int | None = None,
        center: bool = False,
        win_type: str | None = None,
        on: str | None = None,
        closed: IntervalClosedType | None = None,
        method: str = "single",
    ) -> RollingGroupby:
        """
        Return a rolling grouper, providing rolling functionality per group.

        Parameters
        ----------
        window : int, timedelta, str, offset, or BaseIndexer subclass
            Interval of the moving window.

            If an integer, the delta between the start and end of each window.
            The number of points in the window depends on the ``closed`` argument.

            If a timedelta, str, or offset, the time period of each window. Each
            window will be a variable sized based on the observations included in
            the time-period. This is only valid for datetimelike indexes.
            To learn more about the offsets & frequency strings, please see
            :ref:`this link<timeseries.offset_aliases>`.

            If a BaseIndexer subclass, the window boundaries
            based on the defined ``get_window_bounds`` method. Additional rolling
            keyword arguments, namely ``min_periods``, ``center``, ``closed`` and
            ``step`` will be passed to ``get_window_bounds``.

        min_periods : int, default None
            Minimum number of observations in window required to have a value;
            otherwise, result is ``np.nan``.

            For a window that is specified by an offset,
            ``min_periods`` will default to 1.

            For a window that is specified by an integer, ``min_periods`` will default
            to the size of the window.

        center : bool, default False
            If False, set the window labels as the right edge of the window index.

            If True, set the window labels as the center of the window index.

        win_type : str, default None
            If ``None``, all points are evenly weighted.

            If a string, it must be a valid `scipy.signal window function
            <https://docs.scipy.org/doc/scipy/reference/signal.windows.html#module-scipy.signal.windows>`__.

            Certain Scipy window types require additional parameters to be passed
            in the aggregation function. The additional parameters must match
            the keywords specified in the Scipy window type method signature.

        on : str, optional
            For a DataFrame, a column label or Index level on which
            to calculate the rolling window, rather than the DataFrame's index.

            Provided integer column is ignored and excluded from result since
            an integer index is not used to calculate the rolling window.

        closed : str, default None
            Determines the inclusivity of points in the window

            If ``'right'``, uses the window (first, last] meaning the last point
            is included in the calculations.

            If ``'left'``, uses the window [first, last) meaning the first point
            is included in the calculations.

            If ``'both'``, uses the window [first, last] meaning all points in
            the window are included in the calculations.

            If ``'neither'``, uses the window (first, last) meaning the first
            and last points in the window are excluded from calculations.

            () and [] are referencing open and closed set
            notation respetively.

            Default ``None`` (``'right'``).

        method : str {'single', 'table'}, default 'single'
            Execute the rolling operation per single column or row (``'single'``)
            or over the entire object (``'table'``).

            This argument is only implemented when specifying ``engine='numba'``
            in the method call.

        Returns
        -------
        pandas.api.typing.RollingGroupby
            Return a new grouper with our rolling appended.

        See Also
        --------
        Series.rolling : Calling object with Series data.
        DataFrame.rolling : Calling object with DataFrames.
        Series.groupby : Apply a function groupby to a Series.
        DataFrame.groupby : Apply a function groupby.

        Examples
        --------
        >>> df = pd.DataFrame(
        ...     {
        ...         "A": [1, 1, 2, 2],
        ...         "B": [1, 2, 3, 4],
        ...         "C": [0.362, 0.227, 1.267, -0.562],
        ...     }
        ... )
        >>> df
              A  B      C
        0     1  1  0.362
        1     1  2  0.227
        2     2  3  1.267
        3     2  4 -0.562

        >>> df.groupby("A").rolling(2).sum()
            B      C
        A
        1 0  NaN    NaN
          1  3.0  0.589
        2 2  NaN    NaN
          3  7.0  0.705

        >>> df.groupby("A").rolling(2, min_periods=1).sum()
            B      C
        A
        1 0  1.0  0.362
          1  3.0  0.589
        2 2  3.0  1.267
          3  7.0  0.705

        >>> df.groupby("A").rolling(2, on="B").sum()
            B      C
        A
        1 0  1    NaN
          1  2  0.589
        2 2  3    NaN
          3  4  0.705
        """
        from pandas.core.window import RollingGroupby

        return RollingGroupby(
            self._selected_obj,
            window=window,
            min_periods=min_periods,
            center=center,
            win_type=win_type,
            on=on,
            closed=closed,
            method=method,
            _grouper=self._grouper,
            _as_index=self.as_index,
        )

    @final
    def expanding(
        self,
        min_periods: int = 1,
        method: str = "single",
    ) -> ExpandingGroupby:
        """
        Return an expanding grouper, providing expanding functionality per group.

        Parameters
        ----------
        min_periods : int, default 1
            Minimum number of observations in window required to have a value;
            otherwise, result is ``np.nan``.

        method : str {'single', 'table'}, default 'single'
            Execute the expanding operation per single column or row (``'single'``)
            or over the entire object (``'table'``).

            This argument is only implemented when specifying ``engine='numba'``
            in the method call.

        Returns
        -------
        pandas.api.typing.ExpandingGroupby
            An object that supports expanding transformations over each group.

        See Also
        --------
        Series.expanding : Expanding transformations for Series.
        DataFrame.expanding : Expanding transformations for DataFrames.
        Series.groupby : Apply a function groupby to a Series.
        DataFrame.groupby : Apply a function groupby.

        Examples
        --------
        >>> df = pd.DataFrame(
        ...     {
        ...         "Class": ["A", "A", "A", "B", "B", "B"],
        ...         "Value": [10, 20, 30, 40, 50, 60],
        ...     }
        ... )
        >>> df
        Class  Value
        0     A     10
        1     A     20
        2     A     30
        3     B     40
        4     B     50
        5     B     60

        >>> df.groupby("Class").expanding().mean()
                Value
        Class
        A     0   10.0
              1   15.0
              2   20.0
        B     3   40.0
              4   45.0
              5   50.0
        """
        from pandas.core.window import ExpandingGroupby

        return ExpandingGroupby(
            self._selected_obj,
            min_periods=min_periods,
            method=method,
            _grouper=self._grouper,
        )

    @final
    def ewm(
        self,
        com: float | None = None,
        span: float | None = None,
        halflife: float | str | Timedelta | None = None,
        alpha: float | None = None,
        min_periods: int | None = 0,
        adjust: bool = True,
        ignore_na: bool = False,
        times: np.ndarray | Series | None = None,
        method: str = "single",
    ) -> ExponentialMovingWindowGroupby:
        """
        Return an ewm grouper, providing ewm functionality per group.

        Parameters
        ----------
        com : float, optional
            Specify decay in terms of center of mass.
            Alternative to ``span``, ``halflife``, and ``alpha``.

        span : float, optional
            Specify decay in terms of span.

        halflife : float, str, or Timedelta, optional
            Specify decay in terms of half-life.

        alpha : float, optional
            Specify smoothing factor directly.

        min_periods : int, default 0
            Minimum number of observations in the window required to have a value;
            otherwise, result is ``np.nan``.

        adjust : bool, default True
            Divide by decaying adjustment factor to account for imbalance in
            relative weights.

        ignore_na : bool, default False
            Ignore missing values when calculating weights.

        times : str or array-like of datetime64, optional
            Times corresponding to the observations.

        method : {'single', 'table'}, default 'single'
            Execute the operation per group independently (``'single'``) or over the
            entire object before regrouping (``'table'``). Only applicable to
            ``mean()``, and only when using ``engine='numba'``.

        Returns
        -------
        pandas.api.typing.ExponentialMovingWindowGroupby
            An object that supports exponentially weighted moving transformations over
            each group.

        See Also
        --------
        Series.ewm : EWM transformations for Series.
        DataFrame.ewm : EWM transformations for DataFrames.
        Series.groupby : Apply a function groupby to a Series.
        DataFrame.groupby : Apply a function groupby.

        Examples
        --------
        >>> df = pd.DataFrame(
        ...     {
        ...         "Class": ["A", "A", "A", "B", "B", "B"],
        ...         "Value": [10, 20, 30, 40, 50, 60],
        ...     }
        ... )
        >>> df
        Class  Value
        0     A     10
        1     A     20
        2     A     30
        3     B     40
        4     B     50
        5     B     60

        >>> df.groupby("Class").ewm(com=0.5).mean()
                     Value
        Class
        A     0  10.000000
              1  17.500000
              2  26.153846
        B     3  40.000000
              4  47.500000
              5  56.153846
        """
        from pandas.core.window import ExponentialMovingWindowGroupby

        return ExponentialMovingWindowGroupby(
            self._selected_obj,
            com=com,
            span=span,
            halflife=halflife,
            alpha=alpha,
            min_periods=min_periods,
            adjust=adjust,
            ignore_na=ignore_na,
            times=times,
            method=method,
            _grouper=self._grouper,
        )

    @final
    def _fill(self, direction: Literal["ffill", "bfill"], limit: int | None = None):
        """
        Shared function for `pad` and `backfill` to call Cython method.

        Parameters
        ----------
        direction : {'ffill', 'bfill'}
            Direction passed to underlying Cython function. `bfill` will cause
            values to be filled backwards. `ffill` and any other values will
            default to a forward fill
        limit : int, default None
            Maximum number of consecutive values to fill. If `None`, this
            method will convert to -1 prior to passing to Cython

        Returns
        -------
        `Series` or `DataFrame` with filled values

        See Also
        --------
        pad : Returns Series with minimum number of char in object.
        backfill : Backward fill the missing values in the dataset.
        """
        # Need int value for Cython
        if limit is None:
            limit = -1

        ids = self._grouper.ids
        ngroups = self._grouper.ngroups

        col_func = partial(
            libgroupby.group_fillna_indexer,
            labels=ids,
            limit=limit,
            compute_ffill=(direction == "ffill"),
            ngroups=ngroups,
        )

        def blk_func(values: ArrayLike) -> ArrayLike:
            mask = isna(values)
            if values.ndim == 1:
                indexer = np.empty(values.shape, dtype=np.intp)
                col_func(out=indexer, mask=mask)  # type: ignore[arg-type]
                return algorithms.take_nd(values, indexer)

            else:
                # We broadcast algorithms.take_nd analogous to
                #  np.take_along_axis
                if isinstance(values, np.ndarray):
                    dtype = values.dtype
                    if self._grouper.has_dropped_na:
                        # dropped null groups give rise to nan in the result
                        dtype = ensure_dtype_can_hold_na(values.dtype)
                    out = np.empty(values.shape, dtype=dtype)
                else:
                    # Note: we only get here with backfill/pad,
                    #  so if we have a dtype that cannot hold NAs,
                    #  then there will be no -1s in indexer, so we can use
                    #  the original dtype (no need to ensure_dtype_can_hold_na)
                    out = type(values)._empty(values.shape, dtype=values.dtype)

                for i, value_element in enumerate(values):
                    # call group_fillna_indexer column-wise
                    indexer = np.empty(values.shape[1], dtype=np.intp)
                    col_func(out=indexer, mask=mask[i])
                    out[i, :] = algorithms.take_nd(value_element, indexer)
                return out

        mgr = self._get_data_to_aggregate()
        res_mgr = mgr.apply(blk_func)

        new_obj = self._wrap_agged_manager(res_mgr)
        new_obj.index = self.obj.index
        return new_obj

    @final
    def ffill(self, limit: int | None = None):
        """
        Forward fill the values.

        Parameters
        ----------
        limit : int, optional
            Limit of how many values to fill.

        Returns
        -------
        Series or DataFrame
            Object with missing values filled.

        See Also
        --------
        Series.ffill: Returns Series with minimum number of char in object.
        DataFrame.ffill: Object with missing values filled or None if inplace=True.
        Series.fillna: Fill NaN values of a Series.
        DataFrame.fillna: Fill NaN values of a DataFrame.

        Examples
        --------

        For SeriesGroupBy:

        >>> key = [0, 0, 1, 1]
        >>> ser = pd.Series([np.nan, 2, 3, np.nan], index=key)
        >>> ser
        0    NaN
        0    2.0
        1    3.0
        1    NaN
        dtype: float64
        >>> ser.groupby(level=0).ffill()
        0    NaN
        0    2.0
        1    3.0
        1    3.0
        dtype: float64

        For DataFrameGroupBy:

        >>> df = pd.DataFrame(
        ...     {
        ...         "key": [0, 0, 1, 1, 1],
        ...         "A": [np.nan, 2, np.nan, 3, np.nan],
        ...         "B": [2, 3, np.nan, np.nan, np.nan],
        ...         "C": [np.nan, np.nan, 2, np.nan, np.nan],
        ...     }
        ... )
        >>> df
           key    A    B   C
        0    0  NaN  2.0 NaN
        1    0  2.0  3.0 NaN
        2    1  NaN  NaN 2.0
        3    1  3.0  NaN NaN
        4    1  NaN  NaN NaN

        Propagate non-null values forward or backward within each group along columns.

        >>> df.groupby("key").ffill()
             A    B   C
        0  NaN  2.0 NaN
        1  2.0  3.0 NaN
        2  NaN  NaN 2.0
        3  3.0  NaN 2.0
        4  3.0  NaN 2.0

        Propagate non-null values forward or backward within each group along rows.

        >>> df.T.groupby(np.array([0, 0, 1, 1])).ffill().T
           key    A    B    C
        0  0.0  0.0  2.0  2.0
        1  0.0  2.0  3.0  3.0
        2  1.0  1.0  NaN  2.0
        3  1.0  3.0  NaN  NaN
        4  1.0  1.0  NaN  NaN

        Only replace the first NaN element within a group along columns.

        >>> df.groupby("key").ffill(limit=1)
             A    B    C
        0  NaN  2.0  NaN
        1  2.0  3.0  NaN
        2  NaN  NaN  2.0
        3  3.0  NaN  2.0
        4  3.0  NaN  NaN
        """
        return self._fill("ffill", limit=limit)

    @final
    def bfill(self, limit: int | None = None):
        """
        Backward fill the values.

        Parameters
        ----------
        limit : int, optional
            Limit of how many values to fill.

        Returns
        -------
        Series or DataFrame
            Object with missing values filled.

        See Also
        --------
        Series.bfill :  Backward fill the missing values in the dataset.
        DataFrame.bfill:  Backward fill the missing values in the dataset.
        Series.fillna: Fill NaN values of a Series.
        DataFrame.fillna: Fill NaN values of a DataFrame.

        Examples
        --------

        With Series:

        >>> index = ["Falcon", "Falcon", "Parrot", "Parrot", "Parrot"]
        >>> s = pd.Series([None, 1, None, None, 3], index=index)
        >>> s
        Falcon    NaN
        Falcon    1.0
        Parrot    NaN
        Parrot    NaN
        Parrot    3.0
        dtype: float64
        >>> s.groupby(level=0).bfill()
        Falcon    1.0
        Falcon    1.0
        Parrot    3.0
        Parrot    3.0
        Parrot    3.0
        dtype: float64
        >>> s.groupby(level=0).bfill(limit=1)
        Falcon    1.0
        Falcon    1.0
        Parrot    NaN
        Parrot    3.0
        Parrot    3.0
        dtype: float64

        With DataFrame:

        >>> df = pd.DataFrame(
        ...     {"A": [1, None, None, None, 4], "B": [None, None, 5, None, 7]},
        ...     index=index,
        ... )
        >>> df
                  A	    B
        Falcon	1.0	  NaN
        Falcon	NaN	  NaN
        Parrot	NaN	  5.0
        Parrot	NaN	  NaN
        Parrot	4.0	  7.0
        >>> df.groupby(level=0).bfill()
                  A	    B
        Falcon	1.0	  NaN
        Falcon	NaN	  NaN
        Parrot	4.0	  5.0
        Parrot	4.0	  7.0
        Parrot	4.0	  7.0
        >>> df.groupby(level=0).bfill(limit=1)
                  A	    B
        Falcon	1.0	  NaN
        Falcon	NaN	  NaN
        Parrot	NaN	  5.0
        Parrot	4.0	  7.0
        Parrot	4.0	  7.0
        """
        return self._fill("bfill", limit=limit)

    @final
    @property
    def nth(self) -> GroupByNthSelector:
        """
        Take the nth row from each group if n is an int, otherwise a subset of rows.

        Can be either a call or an index. dropna is not available with index notation.
        Index notation accepts a comma separated list of integers and slices.

        If dropna, will take the nth non-null row, dropna is either
        'all' or 'any'; this is equivalent to calling dropna(how=dropna)
        before the groupby.

        Returns
        -------
        Series or DataFrame
            N-th value within each group.

        See Also
        --------
        Series.nth : Apply function nth to a Series.
        DataFrame.nth : Apply function nth to each row or column of a DataFrame.

        Examples
        --------

        >>> df = pd.DataFrame(
        ...     {"A": [1, 1, 2, 1, 2], "B": [np.nan, 2, 3, 4, 5]}, columns=["A", "B"]
        ... )
        >>> g = df.groupby("A")
        >>> g.nth(0)
           A   B
        0  1 NaN
        2  2 3.0
        >>> g.nth(1)
           A   B
        1  1 2.0
        4  2 5.0
        >>> g.nth(-1)
           A   B
        3  1 4.0
        4  2 5.0
        >>> g.nth([0, 1])
           A   B
        0  1 NaN
        1  1 2.0
        2  2 3.0
        4  2 5.0
        >>> g.nth(slice(None, -1))
           A   B
        0  1 NaN
        1  1 2.0
        2  2 3.0

        Index notation may also be used

        >>> g.nth[0, 1]
           A   B
        0  1 NaN
        1  1 2.0
        2  2 3.0
        4  2 5.0
        >>> g.nth[:-1]
           A   B
        0  1 NaN
        1  1 2.0
        2  2 3.0

        Specifying `dropna` allows ignoring ``NaN`` values

        >>> g.nth(0, dropna="any")
           A   B
        1  1 2.0
        2  2 3.0

        When the specified ``n`` is larger than any of the groups, an
        empty DataFrame is returned

        >>> g.nth(3, dropna="any")
        Empty DataFrame
        Columns: [A, B]
        Index: []
        """
        return GroupByNthSelector(self)

    def _nth(
        self,
        n: PositionalIndexer | tuple,
        dropna: Literal["any", "all"] | None = None,
    ) -> NDFrameT:
        if not dropna:
            mask = self._make_mask_from_positional_indexer(n)

            ids = self._grouper.ids

            # Drop NA values in grouping
            mask = mask & (ids != -1)

            out = self._mask_selected_obj(mask)
            return out

        # dropna is truthy
        if not is_integer(n):
            raise ValueError("dropna option only supported for an integer argument")

        if dropna not in ["any", "all"]:
            # Note: when agg-ing picker doesn't raise this, just returns NaN
            raise ValueError(
                "For a DataFrame or Series groupby.nth, dropna must be "
                "either None, 'any' or 'all', "
                f"(was passed {dropna})."
            )

        # old behaviour, but with all and any support for DataFrames.
        # modified in GH 7559 to have better perf
        n = cast(int, n)
        dropped = self._selected_obj.dropna(how=dropna, axis=0)

        # get a new grouper for our dropped obj
        grouper: np.ndarray | Index | ops.BaseGrouper
        if len(dropped) == len(self._selected_obj):
            # Nothing was dropped, can use the same grouper
            grouper = self._grouper
        else:
            # we don't have the grouper info available
            # (e.g. we have selected out
            # a column that is not in the current object)
            axis = self._grouper.axis
            grouper = self._grouper.codes_info[axis.isin(dropped.index)]
            if self._grouper.has_dropped_na:
                # Null groups need to still be encoded as -1 when passed to groupby
                nulls = grouper == -1
                # error: No overload variant of "where" matches argument types
                #        "Any", "NAType", "Any"
                values = np.where(nulls, NA, grouper)  # type: ignore[call-overload]
                grouper = Index(values, dtype="Int64", copy=False)

        grb = dropped.groupby(grouper, as_index=self.as_index, sort=self.sort)
        return grb.nth(n)

    @final
    def quantile(
        self,
        q: float | AnyArrayLike = 0.5,
        interpolation: Literal[
            "linear", "lower", "higher", "nearest", "midpoint"
        ] = "linear",
        numeric_only: bool = False,
    ):
        """
        Return group values at the given quantile, a la numpy.percentile.

        Parameters
        ----------
        q : float or array-like, default 0.5 (50% quantile)
            Value(s) between 0 and 1 providing the quantile(s) to compute.
        interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
            Method to use when the desired quantile falls between two points.
        numeric_only : bool, default False
            Include only `float`, `int` or `boolean` data.

            .. versionchanged:: 2.0.0

                numeric_only now defaults to ``False``.

        Returns
        -------
        Series or DataFrame
            Return type determined by caller of GroupBy object.

        See Also
        --------
        Series.quantile : Similar method for Series.
        DataFrame.quantile : Similar method for DataFrame.
        numpy.percentile : NumPy method to compute qth percentile.

        Examples
        --------
        >>> df = pd.DataFrame(
        ...     [["a", 1], ["a", 2], ["a", 3], ["b", 1], ["b", 3], ["b", 5]],
        ...     columns=["key", "val"],
        ... )
        >>> df.groupby("key").quantile()
            val
        key
        a    2.0
        b    3.0
        """
        mgr = self._get_data_to_aggregate(numeric_only=numeric_only, name="quantile")
        obj = self._wrap_agged_manager(mgr)
        splitter = self._grouper._get_splitter(obj)
        sdata = splitter._sorted_data

        starts, ends = lib.generate_slices(splitter._slabels, splitter.ngroups)

        def pre_processor(vals: ArrayLike) -> tuple[np.ndarray, DtypeObj | None]:
            if isinstance(vals.dtype, StringDtype) or is_object_dtype(vals.dtype):
                raise TypeError(
                    f"dtype '{vals.dtype}' does not support operation 'quantile'"
                )

            inference: DtypeObj | None = None
            if isinstance(vals, BaseMaskedArray) and is_numeric_dtype(vals.dtype):
                out = vals.to_numpy(dtype=float, na_value=np.nan)
                inference = vals.dtype
            elif is_integer_dtype(vals.dtype):
                if isinstance(vals, ExtensionArray):
                    out = vals.to_numpy(dtype=float, na_value=np.nan)
                else:
                    out = vals
                inference = np.dtype(np.int64)
            elif is_bool_dtype(vals.dtype) and isinstance(vals, ExtensionArray):
                out = vals.to_numpy(dtype=float, na_value=np.nan)
            elif is_bool_dtype(vals.dtype):
                # GH#51424 remove to match Series/DataFrame behavior
                raise TypeError("Cannot use quantile with bool dtype")
            elif needs_i8_conversion(vals.dtype):
                inference = vals.dtype
                # In this case we need to delay the casting until after the
                #  np.lexsort below.
                # error: Incompatible return value type (got
                # "Tuple[Union[ExtensionArray, ndarray[Any, Any]], Union[Any,
                # ExtensionDtype]]", expected "Tuple[ndarray[Any, Any],
                # Optional[Union[dtype[Any], ExtensionDtype]]]")
                return vals, inference  # type: ignore[return-value]
            elif isinstance(vals, ExtensionArray) and is_float_dtype(vals.dtype):
                inference = np.dtype(np.float64)
                out = vals.to_numpy(dtype=float, na_value=np.nan)
            else:
                out = np.asarray(vals)

            return out, inference

        def post_processor(
            vals: np.ndarray,
            inference: DtypeObj | None,
            result_mask: np.ndarray | None,
            orig_vals: ArrayLike,
        ) -> ArrayLike:
            if inference:
                # Check for edge case
                if isinstance(orig_vals, BaseMaskedArray):
                    assert result_mask is not None  # for mypy

                    if interpolation in {"linear", "midpoint"} and not is_float_dtype(
                        orig_vals
                    ):
                        return FloatingArray(vals, result_mask)
                    else:
                        # Item "ExtensionDtype" of "Union[ExtensionDtype, str,
                        # dtype[Any], Type[object]]" has no attribute "numpy_dtype"
                        # [union-attr]
                        with warnings.catch_warnings():
                            # vals.astype with nan can warn with numpy >1.24
                            warnings.filterwarnings("ignore", category=RuntimeWarning)
                            return type(orig_vals)(
                                vals.astype(
                                    inference.numpy_dtype  # type: ignore[union-attr]
                                ),
                                result_mask,
                            )

                elif not (
                    is_integer_dtype(inference)
                    and interpolation in {"linear", "midpoint"}
                ):
                    if needs_i8_conversion(inference):
                        # error: Item "ExtensionArray" of "Union[ExtensionArray,
                        # ndarray[Any, Any]]" has no attribute "_ndarray"
                        vals = vals.astype("i8").view(
                            orig_vals._ndarray.dtype  # type: ignore[union-attr]
                        )
                        # error: Item "ExtensionArray" of "Union[ExtensionArray,
                        # ndarray[Any, Any]]" has no attribute "_from_backing_data"
                        return orig_vals._from_backing_data(  # type: ignore[union-attr]
                            vals
                        )

                    assert isinstance(inference, np.dtype)  # for mypy
                    return vals.astype(inference)

            return vals

        if is_scalar(q):
            qs = np.array([q], dtype=np.float64)
            pass_qs: None | np.ndarray = None
        else:
            qs = np.asarray(q, dtype=np.float64)
            pass_qs = qs

        ids = self._grouper.ids
        ngroups = self._grouper.ngroups
        if self.dropna:
            # splitter drops NA groups, we need to do the same
            ids = ids[ids >= 0]
        nqs = len(qs)

        func = partial(
            libgroupby.group_quantile,
            labels=ids,
            qs=qs,
            interpolation=interpolation,
            starts=starts,
            ends=ends,
        )

        def blk_func(values: ArrayLike) -> ArrayLike:
            orig_vals = values
            if isinstance(values, BaseMaskedArray):
                mask = values._mask
                result_mask = np.zeros((ngroups, nqs), dtype=np.bool_)
            else:
                mask = isna(values)
                result_mask = None

            is_datetimelike = needs_i8_conversion(values.dtype)

            vals, inference = pre_processor(values)

            ncols = 1
            if vals.ndim == 2:
                ncols = vals.shape[0]

            out = np.empty((ncols, ngroups, nqs), dtype=np.float64)

            if is_datetimelike:
                vals = vals.view("i8")

            if vals.ndim == 1:
                # EA is always 1d
                func(
                    out[0],
                    values=vals,
                    mask=mask,  # type: ignore[arg-type]
                    result_mask=result_mask,
                    is_datetimelike=is_datetimelike,
                )
            else:
                for i in range(ncols):
                    func(
                        out[i],
                        values=vals[i],
                        mask=mask[i],
                        result_mask=None,
                        is_datetimelike=is_datetimelike,
                    )

            if vals.ndim == 1:
                out = out.ravel("K")  # type: ignore[assignment]
                if result_mask is not None:
                    result_mask = result_mask.ravel("K")  # type: ignore[assignment]
            else:
                out = out.reshape(ncols, ngroups * nqs)  # type: ignore[assignment]

            return post_processor(out, inference, result_mask, orig_vals)

        res_mgr = sdata._mgr.grouped_reduce(blk_func)

        res = self._wrap_agged_manager(res_mgr)
        return self._wrap_aggregated_output(res, qs=pass_qs)

    @final
    def ngroup(self, ascending: bool = True):
        """
        Number each group from 0 to the number of groups - 1.

        This is the enumerative complement of cumcount.  Note that the
        numbers given to the groups match the order in which the groups
        would be seen when iterating over the groupby object, not the
        order they are first observed.

        Groups with missing keys (where `pd.isna()` is True) will be labeled with `NaN`
        and will be skipped from the count.

        Parameters
        ----------
        ascending : bool, default True
            If False, number in reverse, from number of group - 1 to 0.

        Returns
        -------
        Series
            Unique numbers for each group.

        See Also
        --------
        .cumcount : Number the rows in each group.

        Examples
        --------
        >>> df = pd.DataFrame({"color": ["red", None, "red", "blue", "blue", "red"]})
        >>> df
          color
        0   red
        1   NaN
        2   red
        3  blue
        4  blue
        5   red
        >>> df.groupby("color").ngroup()
        0    1.0
        1    NaN
        2    1.0
        3    0.0
        4    0.0
        5    1.0
        dtype: float64
        >>> df.groupby("color", dropna=False).ngroup()
        0    1
        1    2
        2    1
        3    0
        4    0
        5    1
        dtype: int64
        >>> df.groupby("color", dropna=False).ngroup(ascending=False)
        0    1
        1    0
        2    1
        3    2
        4    2
        5    1
        dtype: int64
        """
        obj = self._obj_with_exclusions
        index = obj.index
        comp_ids = self._grouper.ids

        dtype: type
        if self._grouper.has_dropped_na:
            comp_ids = np.where(comp_ids == -1, np.nan, comp_ids)
            dtype = np.float64
        else:
            dtype = np.int64

        if any(ping._passed_categorical for ping in self._grouper.groupings):
            # comp_ids reflect non-observed groups, we need only observed
            comp_ids = rank_1d(comp_ids, ties_method="dense") - 1

        result = self._obj_1d_constructor(comp_ids, index, dtype=dtype)
        if not ascending:
            result = self.ngroups - 1 - result
        return result

    @final
    def cumcount(self, ascending: bool = True):
        """
        Number each item in each group from 0 to the length of that group - 1.

        Essentially this is equivalent to

        .. code-block:: python

            self.apply(lambda x: pd.Series(np.arange(len(x)), x.index))

        Parameters
        ----------
        ascending : bool, default True
            If False, number in reverse, from length of group - 1 to 0.

        Returns
        -------
        Series
            Sequence number of each element within each group.

        See Also
        --------
        .ngroup : Number the groups themselves.

        Examples
        --------
        >>> df = pd.DataFrame([["a"], ["a"], ["a"], ["b"], ["b"], ["a"]], columns=["A"])
        >>> df
           A
        0  a
        1  a
        2  a
        3  b
        4  b
        5  a
        >>> df.groupby("A").cumcount()
        0    0
        1    1
        2    2
        3    0
        4    1
        5    3
        dtype: int64
        >>> df.groupby("A").cumcount(ascending=False)
        0    3
        1    2
        2    1
        3    1
        4    0
        5    0
        dtype: int64
        """
        index = self._obj_with_exclusions.index
        cumcounts = self._cumcount_array(ascending=ascending)
        return self._obj_1d_constructor(cumcounts, index)

    @final
    def rank(
        self,
        method: str = "average",
        ascending: bool = True,
        na_option: str = "keep",
        pct: bool = False,
    ) -> NDFrameT:
        """
        Provide the rank of values within each group.

        Parameters
        ----------
        method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
            * average: average rank of group.
            * min: lowest rank in group.
            * max: highest rank in group.
            * first: ranks assigned in order they appear in the array.
            * dense: like 'min', but rank always increases by 1 between groups.
        ascending : bool, default True
            False for ranks by high (1) to low (N).
        na_option : {'keep', 'top', 'bottom'}, default 'keep'
            * keep: leave NA values where they are.
            * top: smallest rank if ascending.
            * bottom: smallest rank if descending.
        pct : bool, default False
            Compute percentage rank of data within each group.

        Returns
        -------
        DataFrame
            The ranking of values within each group.

        See Also
        --------
        Series.rank : Apply function rank to a Series.
        DataFrame.rank : Apply function rank to each row or column of a DataFrame.

        Examples
        --------
        >>> df = pd.DataFrame(
        ...     {
        ...         "group": ["a", "a", "a", "a", "a", "b", "b", "b", "b", "b"],
        ...         "value": [2, 4, 2, 3, 5, 1, 2, 4, 1, 5],
        ...     }
        ... )
        >>> df
          group  value
        0     a      2
        1     a      4
        2     a      2
        3     a      3
        4     a      5
        5     b      1
        6     b      2
        7     b      4
        8     b      1
        9     b      5
        >>> for method in ["average", "min", "max", "dense", "first"]:
        ...     df[f"{method}_rank"] = df.groupby("group")["value"].rank(method)
        >>> df
          group  value  average_rank  min_rank  max_rank  dense_rank  first_rank
        0     a      2           1.5       1.0       2.0         1.0         1.0
        1     a      4           4.0       4.0       4.0         3.0         4.0
        2     a      2           1.5       1.0       2.0         1.0         2.0
        3     a      3           3.0       3.0       3.0         2.0         3.0
        4     a      5           5.0       5.0       5.0         4.0         5.0
        5     b      1           1.5       1.0       2.0         1.0         1.0
        6     b      2           3.0       3.0       3.0         2.0         3.0
        7     b      4           4.0       4.0       4.0         3.0         4.0
        8     b      1           1.5       1.0       2.0         1.0         2.0
        9     b      5           5.0       5.0       5.0         4.0         5.0
        """
        if na_option not in {"keep", "top", "bottom"}:
            msg = "na_option must be one of 'keep', 'top', or 'bottom'"
            raise ValueError(msg)

        kwargs = {
            "ties_method": method,
            "ascending": ascending,
            "na_option": na_option,
            "pct": pct,
        }

        return self._cython_transform(
            "rank",
            numeric_only=False,
            **kwargs,
        )

    @final
    def cumprod(self, numeric_only: bool = False, *args, **kwargs) -> NDFrameT:
        """
        Cumulative product for each group.

        Parameters
        ----------
        numeric_only : bool, default False
            Include only float, int, boolean columns.
        *args : tuple
            Positional arguments to be passed to `func`.
        **kwargs : dict
            Additional/specific keyword arguments to be passed to the function,
            such as `numeric_only` and `skipna`.

        Returns
        -------
        Series or DataFrame
            Cumulative product for each group. Same object type as the caller.

        See Also
        --------
        Series.cumprod : Apply function cumprod to a Series.
        DataFrame.cumprod : Apply function cumprod to each row or column of a DataFrame.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "b"]
        >>> ser = pd.Series([6, 2, 0], index=lst)
        >>> ser
        a    6
        a    2
        b    0
        dtype: int64
        >>> ser.groupby(level=0).cumprod()
        a    6
        a   12
        b    0
        dtype: int64

        For DataFrameGroupBy:

        >>> data = [[1, 8, 2], [1, 2, 5], [2, 6, 9]]
        >>> df = pd.DataFrame(
        ...     data, columns=["a", "b", "c"], index=["cow", "horse", "bull"]
        ... )
        >>> df
                a   b   c
        cow     1   8   2
        horse   1   2   5
        bull    2   6   9
        >>> df.groupby("a").groups
        {1: ['cow', 'horse'], 2: ['bull']}
        >>> df.groupby("a").cumprod()
                b   c
        cow     8   2
        horse  16  10
        bull    6   9
        """
        nv.validate_groupby_func("cumprod", args, kwargs, ["skipna"])
        return self._cython_transform("cumprod", numeric_only, **kwargs)

    @final
    def cumsum(self, numeric_only: bool = False, *args, **kwargs) -> NDFrameT:
        """
        Cumulative sum for each group.

        Parameters
        ----------
        numeric_only : bool, default False
            Include only float, int, boolean columns.
        *args : tuple
            Positional arguments to be passed to `func`.
        **kwargs : dict
            Additional/specific keyword arguments to be passed to the function,
            such as `numeric_only` and `skipna`.

        Returns
        -------
        Series or DataFrame
            Cumulative sum for each group. Same object type as the caller.

        See Also
        --------
        Series.cumsum : Apply function cumsum to a Series.
        DataFrame.cumsum : Apply function cumsum to each row or column of a DataFrame.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "b"]
        >>> ser = pd.Series([6, 2, 0], index=lst)
        >>> ser
        a    6
        a    2
        b    0
        dtype: int64
        >>> ser.groupby(level=0).cumsum()
        a    6
        a    8
        b    0
        dtype: int64

        For DataFrameGroupBy:

        >>> data = [[1, 8, 2], [1, 2, 5], [2, 6, 9]]
        >>> df = pd.DataFrame(
        ...     data, columns=["a", "b", "c"], index=["fox", "gorilla", "lion"]
        ... )
        >>> df
                  a   b   c
        fox       1   8   2
        gorilla   1   2   5
        lion      2   6   9
        >>> df.groupby("a").groups
        {1: ['fox', 'gorilla'], 2: ['lion']}
        >>> df.groupby("a").cumsum()
                  b   c
        fox       8   2
        gorilla  10   7
        lion      6   9
        """
        nv.validate_groupby_func("cumsum", args, kwargs, ["skipna"])
        return self._cython_transform("cumsum", numeric_only, **kwargs)

    @final
    def cummin(
        self,
        numeric_only: bool = False,
        **kwargs,
    ) -> NDFrameT:
        """
        Cumulative min for each group.

        Parameters
        ----------
        numeric_only : bool, default False
            Include only `float`, `int` or `boolean` data.
        **kwargs : dict, optional
            Additional keyword arguments to be passed to the function, such as `skipna`,
            to control whether NA/null values are ignored.

        Returns
        -------
        Series or DataFrame
            Cumulative min for each group. Same object type as the caller.

        See Also
        --------
        Series.cummin : Apply function cummin to a Series.
        DataFrame.cummin : Apply function cummin to each row or column of a DataFrame.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "a", "b", "b", "b"]
        >>> ser = pd.Series([1, 6, 2, 3, 0, 4], index=lst)
        >>> ser
        a    1
        a    6
        a    2
        b    3
        b    0
        b    4
        dtype: int64
        >>> ser.groupby(level=0).cummin()
        a    1
        a    1
        a    1
        b    3
        b    0
        b    0
        dtype: int64

        For DataFrameGroupBy:

        >>> data = [[1, 0, 2], [1, 1, 5], [6, 6, 9]]
        >>> df = pd.DataFrame(
        ...     data, columns=["a", "b", "c"], index=["snake", "rabbit", "turtle"]
        ... )
        >>> df
                a   b   c
        snake   1   0   2
        rabbit  1   1   5
        turtle  6   6   9
        >>> df.groupby("a").groups
        {1: ['snake', 'rabbit'], 6: ['turtle']}
        >>> df.groupby("a").cummin()
                b   c
        snake   0   2
        rabbit  0   2
        turtle  6   9
        """
        skipna = kwargs.get("skipna", True)
        return self._cython_transform(
            "cummin", numeric_only=numeric_only, skipna=skipna
        )

    @final
    def cummax(
        self,
        numeric_only: bool = False,
        **kwargs,
    ) -> NDFrameT:
        """
        Cumulative max for each group.

        Returns the cumulative maximum of values within each group. The result
        has the same size as the input, with each element representing the
        maximum of all preceding elements (including itself) within its group.

        Parameters
        ----------
        numeric_only : bool, default False
            Include only `float`, `int` or `boolean` data.
        **kwargs : dict, optional
            Additional keyword arguments to be passed to the function, such as `skipna`,
            to control whether NA/null values are ignored.

        Returns
        -------
        Series or DataFrame
            Cumulative max for each group. Same object type as the caller.

        See Also
        --------
        Series.cummax : Apply function cummax to a Series.
        DataFrame.cummax : Apply function cummax to each row or column of a DataFrame.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "a", "b", "b", "b"]
        >>> ser = pd.Series([1, 6, 2, 3, 1, 4], index=lst)
        >>> ser
        a    1
        a    6
        a    2
        b    3
        b    1
        b    4
        dtype: int64
        >>> ser.groupby(level=0).cummax()
        a    1
        a    6
        a    6
        b    3
        b    3
        b    4
        dtype: int64

        For DataFrameGroupBy:

        >>> data = [[1, 8, 2], [1, 1, 0], [2, 6, 9]]
        >>> df = pd.DataFrame(
        ...     data, columns=["a", "b", "c"], index=["cow", "horse", "bull"]
        ... )
        >>> df
                a   b   c
        cow     1   8   2
        horse   1   1   0
        bull    2   6   9
        >>> df.groupby("a").groups
        {1: ['cow', 'horse'], 2: ['bull']}
        >>> df.groupby("a").cummax()
                b   c
        cow     8   2
        horse   8   2
        bull    6   9
        """
        skipna = kwargs.get("skipna", True)
        return self._cython_transform(
            "cummax", numeric_only=numeric_only, skipna=skipna
        )

    @final
    def shift(
        self,
        periods: int | Sequence[int] = 1,
        freq=None,
        fill_value=lib.no_default,
        suffix: str | None = None,
    ):
        """
        Shift each group by periods observations.

        If freq is passed, the index will be increased using the periods and the freq.

        Parameters
        ----------
        periods : int | Sequence[int], default 1
            Number of periods to shift. If a list of values, shift each group by
            each period.
        freq : str, optional
            Frequency string.
        fill_value : optional
            The scalar value to use for newly introduced missing values.

            .. versionchanged:: 2.1.0
                Will raise a ``ValueError`` if ``freq`` is provided too.

        suffix : str, optional
            A string to add to each shifted column if there are multiple periods.
            Ignored otherwise.

        Returns
        -------
        Series or DataFrame
            Object shifted within each group.

        See Also
        --------
        Index.shift : Shift values of Index.

        Examples
        --------

        For SeriesGroupBy:

        >>> lst = ["a", "a", "b", "b"]
        >>> ser = pd.Series([1, 2, 3, 4], index=lst)
        >>> ser
        a    1
        a    2
        b    3
        b    4
        dtype: int64
        >>> ser.groupby(level=0).shift(1)
        a    NaN
        a    1.0
        b    NaN
        b    3.0
        dtype: float64

        For DataFrameGroupBy:

        >>> data = [[1, 2, 3], [1, 5, 6], [2, 5, 8], [2, 6, 9]]
        >>> df = pd.DataFrame(
        ...     data,
        ...     columns=["a", "b", "c"],
        ...     index=["tuna", "salmon", "catfish", "goldfish"],
        ... )
        >>> df
                   a  b  c
            tuna   1  2  3
          salmon   1  5  6
         catfish   2  5  8
        goldfish   2  6  9
        >>> df.groupby("a").shift(1)
                      b    c
            tuna    NaN  NaN
          salmon    2.0  3.0
         catfish    NaN  NaN
        goldfish    5.0  8.0
        """
        if is_list_like(periods):
            periods = cast(Sequence, periods)
            if len(periods) == 0:
                raise ValueError("If `periods` is an iterable, it cannot be empty.")
            from pandas.core.reshape.concat import concat

            add_suffix = True
        else:
            if not is_integer(periods):
                raise TypeError(
                    f"Periods must be integer, but {periods} is {type(periods)}."
                )
            if suffix:
                raise ValueError("Cannot specify `suffix` if `periods` is an int.")
            periods = [cast(int, periods)]
            add_suffix = False

        shifted_dataframes = []
        for period in periods:
            if not is_integer(period):
                raise TypeError(
                    f"Periods must be integer, but {period} is {type(period)}."
                )
            period = cast(int, period)
            if freq is not None:
                f = lambda x: x.shift(
                    period,
                    freq,
                    0,  # axis
                    fill_value,
                )
                shifted = self._python_apply_general(
                    f, self._selected_obj, is_transform=True
                )
            else:
                if fill_value is lib.no_default:
                    fill_value = None
                ids = self._grouper.ids
                ngroups = self._grouper.ngroups
                res_indexer = np.zeros(len(ids), dtype=np.int64)

                libgroupby.group_shift_indexer(res_indexer, ids, ngroups, period)

                obj = self._obj_with_exclusions

                shifted = obj._reindex_with_indexers(
                    {0: (obj.index, res_indexer)},
                    fill_value=fill_value,
                    allow_dups=True,
                )

            if add_suffix:
                if isinstance(shifted, Series):
                    shifted = cast(NDFrameT, shifted.to_frame())
                shifted = shifted.add_suffix(
                    f"{suffix}_{period}" if suffix else f"_{period}"
                )
            shifted_dataframes.append(cast(Union[Series, DataFrame], shifted))

        return (
            shifted_dataframes[0]
            if len(shifted_dataframes) == 1
            else concat(shifted_dataframes, axis=1, sort=False)
        )

    @final
    def diff(
        self,
        periods: int = 1,
    ) -> NDFrameT:
        """
        First discrete difference of element.

        Calculates the difference of each element compared with another
        element in the group (default is element in previous row).

        Parameters
        ----------
        periods : int, default 1
            Periods to shift for calculating difference, accepts negative values.

        Returns
        -------
        Series or DataFrame
            First differences.

        See Also
        --------
        Series.diff : Apply function diff to a Series.
        DataFrame.diff : Apply function diff to each row or column of a DataFrame.

        Examples
        --------
        For SeriesGroupBy:

        >>> lst = ["a", "a", "a", "b", "b", "b"]
        >>> ser = pd.Series([7, 2, 8, 4, 3, 3], index=lst)
        >>> ser
        a     7
        a     2
        a     8
        b     4
        b     3
        b     3
        dtype: int64
        >>> ser.groupby(level=0).diff()
        a    NaN
        a   -5.0
        a    6.0
        b    NaN
        b   -1.0
        b    0.0
        dtype: float64

        For DataFrameGroupBy:

        >>> data = {"a": [1, 3, 5, 7, 7, 8, 3], "b": [1, 4, 8, 4, 4, 2, 1]}
        >>> df = pd.DataFrame(
        ...     data, index=["dog", "dog", "dog", "mouse", "mouse", "mouse", "mouse"]
        ... )
        >>> df
                 a  b
          dog    1  1
          dog    3  4
          dog    5  8
        mouse    7  4
        mouse    7  4
        mouse    8  2
        mouse    3  1
        >>> df.groupby(level=0).diff()
                 a    b
          dog  NaN  NaN
          dog  2.0  3.0
          dog  2.0  4.0
        mouse  NaN  NaN
        mouse  0.0  0.0
        mouse  1.0 -2.0
        mouse -5.0 -1.0
        """
        obj = self._obj_with_exclusions
        shifted = self.shift(periods=periods)

        # GH45562 - to retain existing behavior and match behavior of Series.diff(),
        # int8 and int16 are coerced to float32 rather than float64.
        dtypes_to_f32 = ["int8", "int16"]
        if obj.ndim == 1:
            if obj.dtype in dtypes_to_f32:
                shifted = shifted.astype("float32")
        else:
            to_coerce = [c for c, dtype in obj.dtypes.items() if dtype in dtypes_to_f32]
            if to_coerce:
                shifted = shifted.astype(dict.fromkeys(to_coerce, "float32"))

        return obj - shifted

    @final
    def pct_change(
        self,
        periods: int = 1,
        fill_method: None = None,
        freq=None,
    ):
        """
        Calculate pct_change of each value to previous entry in group.

        Parameters
        ----------
        periods : int, default 1
            Periods to shift for calculating percentage change. Comparing with
            a period of 1 means adjacent elements are compared, whereas a period
            of 2 compares every other element.

        fill_method : None
            Must be None. This argument will be removed in a future version of pandas.

        freq : str, pandas offset object, or None, default None
            The frequency increment for time series data (e.g., 'M' for month-end).
            If None, the frequency is inferred from the index. Relevant for time
            series data only.

        Returns
        -------
        Series or DataFrame
            Percentage changes within each group.

        See Also
        --------
        Series.pct_change : Apply function pct_change to a Series.
        DataFrame.pct_change : Apply function pct_change to each row or column of
            a DataFrame.

        Examples
        --------

        For SeriesGroupBy:

        >>> lst = ["a", "a", "b", "b"]
        >>> ser = pd.Series([1, 2, 3, 4], index=lst)
        >>> ser
        a    1
        a    2
        b    3
        b    4
        dtype: int64
        >>> ser.groupby(level=0).pct_change()
        a         NaN
        a    1.000000
        b         NaN
        b    0.333333
        dtype: float64

        For DataFrameGroupBy:

        >>> data = [[1, 2, 3], [1, 5, 6], [2, 5, 8], [2, 6, 9]]
        >>> df = pd.DataFrame(
        ...     data,
        ...     columns=["a", "b", "c"],
        ...     index=["tuna", "salmon", "catfish", "goldfish"],
        ... )
        >>> df
                   a  b  c
            tuna   1  2  3
          salmon   1  5  6
         catfish   2  5  8
        goldfish   2  6  9
        >>> df.groupby("a").pct_change()
                    b  c
            tuna    NaN    NaN
          salmon    1.5  1.000
         catfish    NaN    NaN
        goldfish    0.2  0.125
        """
        # GH#53491
        if fill_method is not None:
            raise ValueError(f"fill_method must be None; got {fill_method=}.")

        # TODO(GH#23918): Remove this conditional for SeriesGroupBy when
        #  GH#23918 is fixed
        if freq is not None:
            f = lambda x: x.pct_change(
                periods=periods,
                freq=freq,
                axis=0,
            )
            return self._python_apply_general(f, self._selected_obj, is_transform=True)

        if fill_method is None:  # GH30463
            op = "ffill"
        else:
            op = fill_method
        filled = getattr(self, op)(limit=0)
        fill_grp = filled.groupby(self._grouper.codes, group_keys=self.group_keys)
        shifted = fill_grp.shift(periods=periods, freq=freq)
        return (filled / shifted) - 1

    @final
    def head(self, n: int = 5) -> NDFrameT:
        """
        Return first n rows of each group.

        Similar to ``.apply(lambda x: x.head(n))``, but it returns a subset of rows
        from the original DataFrame with original index and order preserved
        (``as_index`` flag is ignored).

        Parameters
        ----------
        n : int
            If positive: number of entries to include from start of each group.
            If negative: number of entries to exclude from end of each group.

        Returns
        -------
        Series or DataFrame
            Subset of original Series or DataFrame as determined by n.

        See Also
        --------
        Series.head : Apply function head to a Series.
        DataFrame.head : Apply function head to each row or column of a DataFrame.

        Examples
        --------

        >>> df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"])
        >>> df.groupby("A").head(1)
           A  B
        0  1  2
        2  5  6
        >>> df.groupby("A").head(-1)
           A  B
        0  1  2
        """
        mask = self._make_mask_from_positional_indexer(slice(None, n))
        return self._mask_selected_obj(mask)

    @final
    def tail(self, n: int = 5) -> NDFrameT:
        """
        Return last n rows of each group.

        Similar to ``.apply(lambda x: x.tail(n))``, but it returns a subset of rows
        from the original DataFrame with original index and order preserved
        (``as_index`` flag is ignored).

        Parameters
        ----------
        n : int
            If positive: number of entries to include from end of each group.
            If negative: number of entries to exclude from start of each group.

        Returns
        -------
        Series or DataFrame
            Subset of original Series or DataFrame as determined by n.

        See Also
        --------
        Series.tail : Apply function tail to a Series.
        DataFrame.tail : Apply function tail to each row or column of a DataFrame.

        Examples
        --------

        >>> df = pd.DataFrame(
        ...     [["a", 1], ["a", 2], ["b", 1], ["b", 2]], columns=["A", "B"]
        ... )
        >>> df.groupby("A").tail(1)
           A  B
        1  a  2
        3  b  2
        >>> df.groupby("A").tail(-1)
           A  B
        1  a  2
        3  b  2
        """
        if n:
            mask = self._make_mask_from_positional_indexer(slice(-n, None))
        else:
            mask = self._make_mask_from_positional_indexer([])

        return self._mask_selected_obj(mask)

    @final
    def _mask_selected_obj(self, mask: npt.NDArray[np.bool_]) -> NDFrameT:
        """
        Return _selected_obj with mask applied.

        Parameters
        ----------
        mask : np.ndarray[bool]
            Boolean mask to apply.

        Returns
        -------
        Series or DataFrame
            Filtered _selected_obj.
        """
        ids = self._grouper.ids
        mask = mask & (ids != -1)
        return self._selected_obj[mask]

    @final
    def sample(
        self,
        n: int | None = None,
        frac: float | None = None,
        replace: bool = False,
        weights: Sequence | Series | None = None,
        random_state: RandomState | None = None,
    ):
        """
        Return a random sample of items from each group.

        You can use `random_state` for reproducibility.

        Parameters
        ----------
        n : int, optional
            Number of items to return for each group. Cannot be used with
            `frac` and must be no larger than the smallest group unless
            `replace` is True. Default is one if `frac` is None.
        frac : float, optional
            Fraction of items to return. Cannot be used with `n`.
        replace : bool, default False
            Allow or disallow sampling of the same row more than once.
        weights : list-like, optional
            Default None results in equal probability weighting.
            If passed a list-like then values must have the same length as
            the underlying DataFrame or Series object and will be used as
            sampling probabilities after normalization within each group.
            Values must be non-negative with at least one positive element
            within each group.
        random_state : int, array-like, BitGenerator, np.random.RandomState, np.random.Generator, optional
            If int, array-like, or BitGenerator, seed for random number generator.
            If np.random.RandomState or np.random.Generator, use as given.
            Default ``None`` results in sampling with the current state of np.random.

        Returns
        -------
        Series or DataFrame
            A new object of same type as caller containing items randomly
            sampled within each group from the caller object.

        See Also
        --------
        DataFrame.sample: Generate random samples from a DataFrame object.
        Series.sample: Generate random samples from a Series object.
        numpy.random.choice: Generate a random sample from a given 1-D numpy
            array.

        Examples
        --------
        >>> df = pd.DataFrame(
        ...     {"a": ["red"] * 2 + ["blue"] * 2 + ["black"] * 2, "b": range(6)}
        ... )
        >>> df
               a  b
        0    red  0
        1    red  1
        2   blue  2
        3   blue  3
        4  black  4
        5  black  5

        Select one row at random for each distinct value in column a. The
        `random_state` argument can be used to guarantee reproducibility:

        >>> df.groupby("a").sample(n=1, random_state=1)
               a  b
        4  black  4
        2   blue  2
        1    red  1

        Set `frac` to sample fixed proportions rather than counts:

        >>> df.groupby("a")["b"].sample(frac=0.5, random_state=2)
        5    5
        2    2
        0    0
        Name: b, dtype: int64

        Control sample probabilities within groups by setting weights:

        >>> df.groupby("a").sample(
        ...     n=1,
        ...     weights=[1, 1, 1, 0, 0, 1],
        ...     random_state=1,
        ... )
               a  b
        5  black  5
        2   blue  2
        0    red  0
        """  # noqa: E501
        if self._selected_obj.empty:
            # GH48459 prevent ValueError when object is empty
            return self._selected_obj
        size = sample.process_sampling_size(n, frac, replace)
        if weights is not None:
            weights_arr = sample.preprocess_weights(self._selected_obj, weights, axis=0)

        random_state = com.random_state(random_state)

        group_iterator = self._grouper.get_iterator(self._selected_obj)

        sampled_indices = []
        for labels, obj in group_iterator:
            grp_indices = self.indices[labels]
            group_size = len(grp_indices)
            if size is not None:
                sample_size = size
            else:
                assert frac is not None
                sample_size = round(frac * group_size)

            grp_sample = sample.sample(
                group_size,
                size=sample_size,
                replace=replace,
                weights=None if weights is None else weights_arr[grp_indices],
                random_state=random_state,
            )
            sampled_indices.append(grp_indices[grp_sample])

        sampled_indices = np.concatenate(sampled_indices)
        return self._selected_obj.take(sampled_indices, axis=0)

    def _idxmax_idxmin(
        self,
        how: Literal["idxmax", "idxmin"],
        ignore_unobserved: bool = False,
        skipna: bool = True,
        numeric_only: bool = False,
    ) -> NDFrameT:
        """Compute idxmax/idxmin.

        Parameters
        ----------
        how : {'idxmin', 'idxmax'}
            Whether to compute idxmin or idxmax.
        numeric_only : bool, default False
            Include only float, int, boolean columns.
        skipna : bool, default True
            Exclude NA/null values. If an entire group is NA, the result will be NA.
        ignore_unobserved : bool, default False
            When True and an unobserved group is encountered, do not raise. This used
            for transform where unobserved groups do not play an impact on the result.

        Returns
        -------
        Series or DataFrame
            idxmax or idxmin for the groupby operation.
        """
        if not self.observed and any(
            ping._passed_categorical for ping in self._grouper.groupings
        ):
            expected_len = len(self._grouper.result_index)
            # TODO: Better way to find # of observed groups?
            group_sizes = self._grouper.size()
            result_len = group_sizes[group_sizes > 0].shape[0]
            assert result_len <= expected_len
            has_unobserved = result_len < expected_len

            raise_err: bool | np.bool_ = not ignore_unobserved and has_unobserved
            # Only raise an error if there are columns to compute; otherwise we return
            # an empty DataFrame with an index (possibly including unobserved) but no
            # columns
            data = self._obj_with_exclusions
            if raise_err and isinstance(data, DataFrame):
                if numeric_only:
                    data = data._get_numeric_data()
                raise_err = len(data.columns) > 0

            if raise_err:
                raise ValueError(
                    f"Can't get {how} of an empty group due to unobserved categories. "
                    "Specify observed=True in groupby instead."
                )
        elif not skipna and self._obj_with_exclusions.isna().any(axis=None):
            raise ValueError(f"{how} with skipna=False encountered an NA value.")

        result = self._agg_general(
            numeric_only=numeric_only,
            min_count=1,
            alias=how,
            skipna=skipna,
        )
        return result

    def _wrap_idxmax_idxmin(
        self, res: NDFrameT, how: Literal["idxmax", "idxmin"], skipna: bool
    ) -> NDFrameT:
        index = self.obj.index
        if res.size == 0:
            result = res.astype(index.dtype)
        elif skipna and res.lt(0).any(axis=None):
            raise ValueError(
                f"{how} with skipna=True encountered all NA values in a group."
            )
        else:
            if isinstance(index, MultiIndex):
                index = index.to_flat_index()
            values = res._values
            assert isinstance(values, np.ndarray)
            na_value = na_value_for_dtype(index.dtype, compat=False)
            if isinstance(res, Series):
                # mypy: expression has type "Series", variable has type "NDFrameT"
                result = res._constructor(  # type: ignore[assignment]
                    index.array.take(values, allow_fill=True, fill_value=na_value),
                    index=res.index,
                    name=res.name,
                )
            else:
                data = {}
                for k, column_values in enumerate(values.T):
                    data[k] = index.array.take(
                        column_values, allow_fill=True, fill_value=na_value
                    )
                result = self.obj._constructor(data, index=res.index)
                result.columns = res.columns
        return result


def get_groupby(
    obj: NDFrame,
    by: _KeysArgType | None = None,
    grouper: ops.BaseGrouper | None = None,
    group_keys: bool = True,
) -> GroupBy:
    """
    Class for grouping and aggregating relational data.

    See aggregate, transform, and apply functions on this object.

    It's easiest to use obj.groupby(...) to use GroupBy, but you can also do:

    ::

        grouped = groupby(obj, ...)

    Parameters
    ----------
    obj : pandas object
    level : int, default None
        Level of MultiIndex
    groupings : list of Grouping objects
        Most users should ignore this
    exclusions : array-like, optional
        List of columns to exclude
    name : str
        Most users should ignore this

    Returns
    -------
    **Attributes**
    groups : dict
        {group name -> group labels}
    len(grouped) : int
        Number of groups

    Notes
    -----
    After grouping, see aggregate, apply, and transform functions. Here are
    some other brief notes about usage. When grouping by multiple groups, the
    result index will be a MultiIndex (hierarchical) by default.

    Iteration produces (key, group) tuples, i.e. chunking the data by group. So
    you can write code like:

    ::

        grouped = obj.groupby(keys)
        for key, group in grouped:
            # do something with the data

    Function calls on GroupBy, if not specially implemented, "dispatch" to the
    grouped data. So if you group a DataFrame and wish to invoke the std()
    method on each group, you can simply do:

    ::

        df.groupby(mapper).std()

    rather than

    ::

        df.groupby(mapper).aggregate(np.std)

    You can pass arguments to these "wrapped" functions, too.

    See the online documentation for full exposition on these topics and much
    more
    """
    if isinstance(obj, Series):
        from pandas.core.groupby.generic import SeriesGroupBy

        return SeriesGroupBy(
            obj=obj,
            keys=by,
            grouper=grouper,
            group_keys=group_keys,
        )
    elif isinstance(obj, DataFrame):
        from pandas.core.groupby.generic import DataFrameGroupBy

        return DataFrameGroupBy(
            obj=obj,
            keys=by,
            grouper=grouper,
            group_keys=group_keys,
        )
    else:  # pragma: no cover
        raise TypeError(f"invalid type: {obj}")


def _insert_quantile_level(idx: Index, qs: npt.NDArray[np.float64]) -> MultiIndex:
    """
    Insert the sequence 'qs' of quantiles as the inner-most level of a MultiIndex.

    The quantile level in the MultiIndex is a repeated copy of 'qs'.

    Parameters
    ----------
    idx : Index
    qs : np.ndarray[float64]

    Returns
    -------
    MultiIndex
    """
    nqs = len(qs)
    lev_codes, lev = Index(qs, copy=False).factorize()
    lev_codes = coerce_indexer_dtype(lev_codes, lev)

    if idx._is_multi:
        idx = cast(MultiIndex, idx)
        levels = [*idx.levels, lev]
        codes = [np.repeat(x, nqs) for x in idx.codes] + [np.tile(lev_codes, len(idx))]
        mi = MultiIndex(levels=levels, codes=codes, names=[*idx.names, None])
    else:
        nidx = len(idx)
        idx_codes = coerce_indexer_dtype(np.arange(nidx), idx)
        levels = [idx, lev]
        codes = [np.repeat(idx_codes, nqs), np.tile(lev_codes, nidx)]
        mi = MultiIndex(levels=levels, codes=codes, names=[idx.name, None])

    return mi
