
    n
qia                        d Z ddlZddlZddlmZ ddlmZmZ ddlm	Z	 ddl
Z
ddl
mZ g dZ ed          Z e	d	          Zed
         Zed         Z	 d:dededede
j        dz  def
dZ	 d:dededede
j        dz  def
dZ	 d:dededededede
j        dz  defdZdededefdZdedefdZ	 d:dedeez  dz  defdZ	 	 	 d;dededede
j        dz  def
dZ	 	 	 d;dededede
j        dz  def
dZ	 	 	 	 	 d<dededededede
j        dz  defd"Zdededefd#Zdedefd$Zdedefd%Zdedefd&Z d=ded(edefd)Z!dede"eef         fd*Z#	 	 d>ded+ede
j        dz  defd,Z$	 	 d>ded+ede
j        dz  defd-Z%ded.edefd/Z&	 	 	 	 d?deded.edede
j        dz  defd2Z'	 	 	 	 d?deded.edede
j        dz  defd3Z(	 	 d@ded+ede
j        dz  defd4Z)	 	 dAded6edede
j        dz  def
d7Z*d8eeef         deeef         fd9Z+ e+e          Z, e+e          Z- e+e          Z. e+e           Z/ e+e!          Z0 e+e$          Z1 e+e%          Z2 e+e'          Z3 e+e(          Z4 e+e)          Z5 e+e*          Z6dS )BzHThis file contains utilities for initializing neural network parameters.    N)Callable)LiteralTypeVar)	ParamSpec)Tensor)calculate_gainuniform_normal_trunc_normal_	constant_ones_zeros_eye_dirac_xavier_uniform_xavier_normal_kaiming_uniform_kaiming_normal_orthogonal_sparse_uniformnormalconstanteyediracxavier_uniformxavier_normalkaiming_uniformkaiming_normal
orthogonalsparse_R_P)linearconv1dconv2dconv3dconv_transpose1dconv_transpose2dconv_transpose3dsigmoidtanhrelu
leaky_reluselu)fan_infan_outtensorab	generatorreturnc                     t          j                    5  |                     |||          cd d d            S # 1 swxY w Y   d S Nr5   )torchno_gradr	   r2   r3   r4   r5   s       m/var/www/html/bestrading.cuttalo.com/services/ml-inference/venv/lib/python3.11/site-packages/torch/nn/init.py_no_grad_uniform_r>   E   s     
 : :q!y99: : : : : : : : : : : : : : : : : :   9= =meanstdc                     t          j                    5  |                     |||          cd d d            S # 1 swxY w Y   d S r8   )r:   r;   r
   r2   r@   rA   r5   s       r=   _no_grad_normal_rD   L   s     
 > >~~dC9~==> > > > > > > > > > > > > > > > > >r?   c                 @   dt           dt           fd}||d|z  z
  k     s||d|z  z   k    rt          j        dd           t          j                    5   |||z
  |z            } |||z
  |z            }|                     d|z  dz
  d|z  dz
  |           |                                  |                     |t          j	        d	          z             | 
                    |           |                     ||
           | cd d d            S # 1 swxY w Y   d S )Nxr6   c                 `    dt          j        | t          j        d          z            z   dz  S )N      ?       @)matherfsqrt)rF   s    r=   norm_cdfz(_no_grad_trunc_normal_.<locals>.norm_cdf_   s)    dhq49S>>1222c99       zjmean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.
stacklevel   r9   rI   )minmax)floatwarningswarnr:   r;   r	   erfinv_mul_rJ   rL   add_clamp_)	r2   r@   rA   r3   r4   r5   rM   lus	            r=   _no_grad_trunc_normal_r^   V   s   :E :e : : : : 	q1s7{q1s7{ 2 2;	
 	
 	
 	
 
   Ha$h#%&&Ha$h#%&& 	A	1q519	BBB 	 	C$)C..()))D 	!###+                 s   B2DDDvalc                     t          j                    5  |                     |          cd d d            S # 1 swxY w Y   d S N)r:   r;   fill_r2   r_   s     r=   _no_grad_fill_rd      s    	 ! !||C  ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !s   6::c                     t          j                    5  |                                 cd d d            S # 1 swxY w Y   d S ra   )r:   r;   zero_r2   s    r=   _no_grad_zero_rh      s}    	  ||~~                 s   599nonlinearityparamc                    g d}| |v s| dk    rdS | dk    rdS | dk    rt          j        d          S | dk    rw|d
}nUt          |t                    st          |t                    st          |t
                    r|}nt          d| d          t          j        dd|dz  z   z            S | dk    r	 dS t          d|            )a  Return the recommended gain value for the given nonlinearity function.

    The values are as follows:

    ================= ====================================================
    nonlinearity      gain
    ================= ====================================================
    Linear / Identity :math:`1`
    Conv{1,2,3}D      :math:`1`
    Sigmoid           :math:`1`
    Tanh              :math:`\frac{5}{3}`
    ReLU              :math:`\sqrt{2}`
    Leaky Relu        :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`
    SELU              :math:`\frac{3}{4}`
    ================= ====================================================

    .. warning::
        In order to implement `Self-Normalizing Neural Networks`_ ,
        you should use ``nonlinearity='linear'`` instead of ``nonlinearity='selu'``.
        This gives the initial weights a variance of ``1 / N``,
        which is necessary to induce a stable fixed point in the forward pass.
        In contrast, the default gain for ``SELU`` sacrifices the normalization
        effect for more stable gradient flow in rectangular layers.

    Args:
        nonlinearity: the non-linear function (`nn.functional` name)
        param: optional parameter for the non-linear function

    Examples:
        >>> gain = nn.init.calculate_gain(
        ...     "leaky_relu", 0.2
        ... )  # leaky_relu with negative_slope=0.2

    .. _Self-Normalizing Neural Networks: https://papers.nips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
    )r$   r%   r&   r'   r(   r)   r*   r+   rR   r,   g?r-   rI   r.   N{Gz?znegative_slope z not a valid numberrO   r/   g      ?zUnsupported nonlinearity )rJ   rL   
isinstanceboolintrU   
ValueError)ri   rj   
linear_fnsnegative_slopes       r=   r   r      s   L  J z!!\Y%>%>q			w			y~~		%	%=!NN5$''	K5#&&	K %''	K #NNIuIIIJJJyNA$5 56777				
 	
 C\CCDDDrN           rH   c                     t           j                            |           r+t           j                            t          | f| |||          S t          | |||          S )a  Fill the input Tensor with values drawn from the uniform distribution.

    :math:`\mathcal{U}(a, b)`.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        a: the lower bound of the uniform distribution
        b: the upper bound of the uniform distribution
        generator: the torch Generator to sample from (default: None)

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.uniform_(w)
    r<   )r:   	overrideshas_torch_function_variadichandle_torch_functionr	   r>   r<   s       r=   r	   r	      s`    ( 226:: 
44vi!qI 5 
 
 	
 VQ9555rN   c                     t           j                            |           r+t           j                            t          | f| |||          S t          | |||          S )a  Fill the input Tensor with values drawn from the normal distribution.

    :math:`\mathcal{N}(\text{mean}, \text{std}^2)`.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        generator: the torch Generator to sample from (default: None)

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.normal_(w)
    rC   )r:   ru   rv   rw   r
   rD   rC   s       r=   r
   r
      s`    ( 226:: 
44fYvDcY 5 
 
 	
 FD#y999rN          rI   c                 ,    t          | |||||          S )a  Fill the input Tensor with values drawn from a truncated normal distribution.

    The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
        generator: the torch Generator to sample from (default: None)

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    r9   )r^   )r2   r@   rA   r3   r4   r5   s         r=   r   r     s    8 "&$QYOOOOrN   c                     t           j                            |           r)t           j                            t          | f| |          S t          | |          S )zFill the input Tensor with the value :math:`\text{val}`.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        val: the value to fill the tensor with

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.constant_(w, 0.3)
    rc   )r:   ru   rv   rw   r   rd   rc   s     r=   r   r   +  sX     226:: 
44yS 5 
 
 	
 &#&&&rN   c                 "    t          | d          S )zFill the input Tensor with the scalar value `1`.

    Args:
        tensor: an n-dimensional `torch.Tensor`

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.ones_(w)
    rH   )rd   rg   s    r=   r   r   =  s     &#&&&rN   c                      t          |           S )zFill the input Tensor with the scalar value `0`.

    Args:
        tensor: an n-dimensional `torch.Tensor`

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.zeros_(w)
    )rh   rg   s    r=   r   r   J  s     &!!!rN   c                     |                                  dk    rt          d          t          j                    5  t          j        | j        | | j        d ddd           n# 1 swxY w Y   | S )a=  Fill the 2-dimensional input `Tensor` with the identity matrix.

    Preserves the identity of the inputs in `Linear` layers, where as
    many inputs are preserved as possible.

    Args:
        tensor: a 2-dimensional `torch.Tensor`

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.eye_(w)
    rO   ,Only tensors with 2 dimensions are supported)outrequires_gradN)
ndimensionrp   r:   r;   r   shaper   rg   s    r=   r   r   W  s     aGHHH	 Q Q	6<V6;OPPPPQ Q Q Q Q Q Q Q Q Q Q Q Q Q QMs   A$$A(+A(rR   groupsc                 @   |                                  }|dvrt          d          |                                 }|d         |z  dk    rt          d          |d         |z  }t          ||d                   }t	          j                    5  |                                  t          |          D ]}t          |          D ]}|dk    r%d| ||z  |z   ||                     d          dz  f<   -|dk    r<d| ||z  |z   ||                     d          dz  |                     d          dz  f<   od| ||z  |z   ||                     d          dz  |                     d          dz  |                     d          dz  f<   	 d	d	d	           n# 1 swxY w Y   | S )
aF  Fill the {3, 4, 5}-dimensional input `Tensor` with the Dirac delta function.

    Preserves the identity of the inputs in `Convolutional`
    layers, where as many input channels are preserved as possible. In case
    of groups>1, each group of channels preserves identity

    Args:
        tensor: a {3, 4, 5}-dimensional `torch.Tensor`
        groups (int, optional): number of groups in the conv layer (default: 1)
    Examples:
        >>> w = torch.empty(3, 16, 5, 5)
        >>> nn.init.dirac_(w)
        >>> w = torch.empty(3, 24, 5, 5)
        >>> nn.init.dirac_(w, 3)
    )         z5Only tensors with 3, 4, or 5 dimensions are supportedr   z!dim 0 must be divisible by groupsrR   r   rO   r   N)r   rp   sizerS   r:   r;   rf   range)r2   r   
dimensionssizesout_chans_per_grpmin_dimgds           r=   r   r   l  s     ""$$J""PQQQKKMMEQx&A<===aF*#U1X..G	  v 	 	A7^^  ??PQF10014aQ19LLMM1__  --1A!+A!+-   --1A!+A!+A!+	- 	              , Ms   C8FFFc                 &   |                                  }|dk     rt          d          |                     d          }|                     d          }d}|                                  dk    r| j        dd          D ]}||z  }||z  }||z  }||fS )NrO   zNFan in and fan out can not be computed for tensor with fewer than 2 dimensionsrR   r   )dimrp   r   r   )r2   r   num_input_fmapsnum_output_fmapsreceptive_field_sizesr0   r1   s           r=   _calculate_fan_in_and_fan_outr     s    JA~~\
 
 	
 kk!nnO{{1~~zz||a abb! 	& 	&A A%  33F!55G7?rN   gainc                     t          |           \  }}|t          j        dt          ||z             z            z  }t          j        d          |z  }t	          | | ||          S )a  Fill the input `Tensor` with values using a Xavier uniform distribution.

    The method is described in `Understanding the difficulty of training
    deep feedforward neural networks` - Glorot, X. & Bengio, Y. (2010).
    The resulting tensor will have values sampled from
    :math:`\mathcal{U}(-a, a)` where

    .. math::
        a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}}

    Also known as Glorot initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        gain: an optional scaling factor
        generator: the torch Generator to sample from (default: None)

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain("relu"))
    rI         @)r   rJ   rL   rU   r>   )r2   r   r5   r0   r1   rA   r3   s          r=   r   r     sc    4 4F;;OFG
3v'7!8!8899
9C	#AVaRI666rN   c                     t          |           \  }}|t          j        dt          ||z             z            z  }t	          | d||          S )a  Fill the input `Tensor` with values using a Xavier normal distribution.

    The method is described in `Understanding the difficulty of training deep feedforward
    neural networks` - Glorot, X. & Bengio, Y. (2010). The resulting tensor
    will have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where

    .. math::
        \text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}}

    Also known as Glorot initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        gain: an optional scaling factor
        generator: the torch Generator to sample from (default: None)

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.xavier_normal_(w)
    rI   rs   )r   rJ   rL   rU   rD   )r2   r   r5   r0   r1   rA   s         r=   r   r     sO    2 4F;;OFG
3v'7!8!8899
9CFCi888rN   modec                     |                                 }ddg}||vrt          d| d|           t          |           \  }}|dk    r|n|S )Nr0   r1   zMode z" not supported, please use one of )lowerrp   r   )r2   r   valid_modesr0   r1   s        r=   _calculate_correct_fanr     sh    ::<<DY'K;VVVVVWWW3F;;OFGX%%6672rN   r0   r.   c           	         t           j                            |           r,t           j                            t          | f| ||||          S d| j        v rt          j        dd           | S t          | |          }t          ||          }|t          j        |          z  }t          j        d          |z  }t          j                    5  |                     | ||          cddd           S # 1 swxY w Y   dS )	a  Fill the input `Tensor` with values using a Kaiming uniform distribution.

    The method is described in `Delving deep into rectifiers: Surpassing
    human-level performance on ImageNet classification` - He, K. et al. (2015).
    The resulting tensor will have values sampled from
    :math:`\mathcal{U}(-\text{bound}, \text{bound})` where

    .. math::
        \text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}

    Also known as He initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        a: the negative slope of the rectifier used after this layer (only
            used with ``'leaky_relu'``)
        mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
            preserves the magnitude of the variance of the weights in the
            forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
            backwards pass.
        nonlinearity: the non-linear function (`nn.functional` name),
            recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
        generator: the torch Generator to sample from (default: None)

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.kaiming_uniform_(w, mode="fan_in", nonlinearity="relu")

    Note:
        Be aware that ``fan_in`` and ``fan_out`` are calculated assuming
        that the weight matrix is used in a transposed manner,
        (i.e., ``x @ w.T`` in ``Linear`` layers, where ``w.shape = [fan_out, fan_in]``).
        This is important for correct initialization.
        If you plan to use ``x @ w``, where ``w.shape = [fan_in, fan_out]``,
        pass in a transposed weight matrix, i.e. ``nn.init.kaiming_uniform_(w.T, ...)``.
    )r2   r3   r   ri   r5   r   ,Initializing zero-element tensors is a no-oprO   rP   r   r9   N)r:   ru   rv   rw   r   r   rV   rW   r   r   rJ   rL   r;   r	   )	r2   r3   r   ri   r5   fanr   rA   bounds	            r=   r   r     s[   V 226:: 	
44I% 5 
 
 	
 	FLDQRSSSS
 
.
.C,**D
3
CIcNNS E	 C Cvu	BBC C C C C C C C C C C C C C C C C Cs   C44C8;C8c                 <   d| j         v rt          j        dd           | S t          | |          }t	          ||          }|t          j        |          z  }t          j                    5  | 	                    d||          cddd           S # 1 swxY w Y   dS )a  Fill the input `Tensor` with values using a Kaiming normal distribution.

    The method is described in `Delving deep into rectifiers: Surpassing
    human-level performance on ImageNet classification` - He, K. et al. (2015).
    The resulting tensor will have values sampled from
    :math:`\mathcal{N}(0, \text{std}^2)` where

    .. math::
        \text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}}

    Also known as He initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        a: the negative slope of the rectifier used after this layer (only
            used with ``'leaky_relu'``)
        mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
            preserves the magnitude of the variance of the weights in the
            forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
            backwards pass.
        nonlinearity: the non-linear function (`nn.functional` name),
            recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
        generator: the torch Generator to sample from (default: None)

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.kaiming_normal_(w, mode="fan_out", nonlinearity="relu")

    Note:
        Be aware that ``fan_in`` and ``fan_out`` are calculated assuming
        that the weight matrix is used in a transposed manner,
        (i.e., ``x @ w.T`` in ``Linear`` layers, where ``w.shape = [fan_out, fan_in]``).
        This is important for correct initialization.
        If you plan to use ``x @ w``, where ``w.shape = [fan_in, fan_out]``,
        pass in a transposed weight matrix, i.e. ``nn.init.kaiming_normal_(w.T, ...)``.
    r   r   rO   rP   r9   N)
r   rV   rW   r   r   rJ   rL   r:   r;   r
   )r2   r3   r   ri   r5   r   r   rA   s           r=   r   r   B  s    V 	FLDQRSSSS
 
.
.C,**D
3
C	 ; ;~~a	~::; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;s   ,BBBc                    |                                  dk     rt          d          |                                 dk    r| S |                     d          }|                                 |z  }|                     ||f                              dd|          }||k     r|                                 t          j        	                    |          \  }}t          j
        |d          }|                                }	||	z  }||k     r|                                 t          j                    5  |                     |                              |           |                     |           ddd           n# 1 swxY w Y   | S )a  Fill the input `Tensor` with a (semi) orthogonal matrix.

    Described in `Exact solutions to the nonlinear dynamics of learning in deep
    linear neural networks` - Saxe, A. et al. (2013). The input tensor must have
    at least 2 dimensions, and for tensors with more than 2 dimensions the
    trailing dimensions are flattened.

    Args:
        tensor: an n-dimensional `torch.Tensor`, where :math:`n \geq 2`
        gain: optional scaling factor
        generator: the torch Generator to sample from (default: None)

    Examples:
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
        >>> w = torch.empty(3, 5)
        >>> nn.init.orthogonal_(w)
    rO   z4Only tensors with 2 or more dimensions are supportedr   rR   r9   N)r   rp   numelr   	new_emptyr
   t_r:   linalgqrdiagsignr;   view_ascopy_rY   )
r2   r   r5   rowscols	flattenedqrr   phs
             r=   r   r   w  s   , QOPPP||~~;;q>>D<<>>T!D  $..66q!y6QQId{{ <??9%%DAq
1aA	
BGAd{{		  q"""D               Ms   2>E<<F F rl   sparsityc                    |                                  dk    rt          d          | j        \  }}t          j        ||z            }t          j                    5  |                     d||           t          |          D ]'}t          j	        |          }|d|         }	d| |	|f<   (	 ddd           n# 1 swxY w Y   | S )a  Fill the 2D input `Tensor` as a sparse matrix.

    The non-zero elements will be drawn from the normal distribution
    :math:`\mathcal{N}(0, 0.01)`, as described in `Deep learning via
    Hessian-free optimization` - Martens, J. (2010).

    Args:
        tensor: an n-dimensional `torch.Tensor`
        sparsity: The fraction of elements in each column to be set to zero
        std: the standard deviation of the normal distribution used to generate
            the non-zero values
        generator: the torch Generator to sample from (default: None)

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.sparse_(w, sparsity=0.1)
    rO   r   r   r9   N)
r   rp   r   rJ   ceilr:   r;   r
   r   randperm)
r2   r   rA   r5   r   r   	num_zeroscol_idxrow_indiceszero_indicess
             r=   r   r     s   . aGHHHJD$	(T/**I	 . .q#333T{{ 	. 	.G...K&z	z2L,-F<())	.. . . . . . . . . . . . . . . Ms   AB99B= B=methc                       j         d d         dt          j        dt          j        dt          f fd}d d d d	|_        |_         |S )
Nargskwargsr6   c                  Z    t          j        d d dt          d            | i |S )Nz	`nn.init.z)` is now deprecated in favor of `nn.init.z`.rO   rP   )rV   rW   FutureWarning)r   r   r   new_nameold_names     r=   deprecated_initz(_make_deprecate.<locals>.deprecated_init  sO    WWW8WWW	
 	
 	
 	

 tT$V$$$rN   z
    z_(...)

    .. warning::
        This method is now deprecated in favor of :func:`torch.nn.init.z"`.

    See :func:`~torch.nn.init.z` for details.)__name__r#   r   r   r"   __doc__)r   r   r   r   s   ` @@r=   _make_deprecater     s    }H}H%rw %") % % % % % % % % %:: : IQ	: :  (: : :O  (OrN   ra   )rs   rH   N)rs   rH   ry   rI   N)rR   )rH   N)r   r0   r.   N)rR   N)rl   N)7r   rJ   rV   collections.abcr   typingr   r   typing_extensionsr   r:   r   __all__r"   r#   _NonlinearityType_FanModerU   	Generatorr>   rD   r^   rd   rh   ro   r   r	   r
   r   r   r   r   r   r   tupler   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!    rN   r=   <module>r      s   N N   $ $ $ $ $ $ # # # # # # # # ' ' ' ' ' '         > WT]]Yt__  &' MQ: :::!&:38?T3I:: : : : )-	> >>
> 
> %	>
 > > > >  )-) ))
) 
) 	)
 ) %) ) ) ) )X!6 ! !& ! ! ! !
6 f     BFGE GE#GE,/%K$,>GE
GE GE GE GEX (,	6 666 6 %	6
 6 6 6 6: (,	: ::
: 
: %	:
 : : : :: (,P PP
P 
P 	P
 P %P P P P P>'f '5 'V ' ' ' '$
'& 
'V 
' 
' 
' 
'
"6 
"f 
" 
" 
" 
" F    *2 26 23 2v 2 2 2 2j& U38_    . (,7 77
7 %7 	7 7 7 7F (,9 99
9 %9 	9 9 9 9>36 3 3c 3 3 3 3 &2(,>C >C>C>C >C $	>C
 %>C >C >C >C >CF &2(,2; 2;2;2; 2; $	2;
 %2; 2; 2; 2; 2;n (,0 00
0 %0 	0 0 0 0l (,	# ### 
# %	#
 # # # #N(2r6* xB/?    . /(
#
#		!	!?9%%od 11//!/"233 11_[))
		!	!rN   