
    n
qia              $          d Z ddlmZ ddlZddlmZ ddlmZmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZ ddgZ G d	 de          Zd
de de
 de de de dz   e_         dee         dee         dee         dee         dee         dededededededededededdf dZdee         dee         dee         dee         dee         dededededededededededdf d Z e	e!          	 	 	 	 	 	 d%dee         dee         dee         dee         dee         ded#edz  dedededededededededdf"d$            ZdS )&z'Implementation for the RAdam algorithm.    )castN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_params_doc
_to_scalar_use_grad_for_differentiable_view_as_real	OptimizerParamsTRAdamradamc                        e Zd Z	 	 	 	 	 ddddddded	eez  d
eeef         dededededz  dedededdf fdZ fdZ	d Z
edd            Z xZS )r   MbP?g?g+?:0yE>r   FN)foreachmaximize
capturabledifferentiableparamslrbetasepsweight_decaydecoupled_weight_decayr   r   r   r   returnc          
          t          |t                    r'|                                dk    rt          d          d|k    st          d|           d|k    st          d|           d|d         cxk    rdk     sn t          d|d                    d|d         cxk    rdk     sn t          d	|d                    d|k    st          d
|           |||||||	||
d	}t	                                          ||           d S )Nr   zTensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: )	r    r!   r"   r#   r   r   r   r$   r   )
isinstancer   numel
ValueErrorsuper__init__)selfr   r    r!   r"   r#   r$   r   r   r   r   defaults	__class__s               q/var/www/html/bestrading.cuttalo.com/services/ml-inference/venv/lib/python3.11/site-packages/torch/optim/radam.pyr-   zRAdam.__init__    s_    b&!! 	<bhhjjAoo:;;;byy;r;;<<<czz<s<<===eAh$$$$$$$$M58MMNNNeAh$$$$$$$$M58MMNNNl""JLJJKKK ( $&<,

 

 	*****    c                    t                                          |           | j        D ].}|                    dd            |                    dd           |                    dd           |                    dd           |                    dd           |d         D ]}| j                            |g           }t          |          dk    rt          j        |d	                   sjt          |d	                   }|d         r(t          j
        |t                      |j        
          n!t          j
        |t                                |d	<   0d S )Nr   r   Fr   r$   r   r   r   stepdtypedevicer6   )r,   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r7   )r.   r<   grouppp_statestep_valr0   s         r1   r9   zRAdam.__setstate__H   sf   U###& 	 	EY---Z///-u5555u===\51118_ 
 
*..B//w<<1$$U_WV_-M-M$$WV_55H
 !.O$,=,?,?    #\(:K:M:MNNN FO	
	 	r2   c                    d}|d         D ]x}|j         m|t          j        |          z  }|                    |           |j         j        rt          d          |                    |j                    | j        |         }	t          |	          dk    r|d         r(t          j        dt                      |j
                  n!t          j        dt                      	          |	d
<   t          j        |t          j                  |	d<   t          j        |t          j                  |	d<   |                    |	d                    |                    |	d                    |                    |	d
                    z|S )NFr   z'RAdam does not support sparse gradientsr   r    r5   r'   r8   r4   )memory_formatexp_avg
exp_avg_sq)gradr?   
is_complexappend	is_sparseRuntimeErrorr<   r>   zerosr   r7   rB   
zeros_likepreserve_format)
r.   rC   params_with_gradgradsexp_avgsexp_avg_sqsstate_stepshas_complexrD   r<   s
             r1   _init_groupzRAdam._init_group\   s    x 	2 	2Av!u/222 ''***6# R&'PQQQQV$$$
1u::?? !.JB.?.A.A!(SSSS"\#5F5H5HIII &M (-'7)>( ( (E)$ +0*:)>+ + +E,' i 0111""5#6777""5=111r2   c                    |                                   d}|5t          j                    5   |            }ddd           n# 1 swxY w Y   | j        D ]}g }g }g }g }g }t	          t
          t          t          f         |d                   \  }	}
|                     ||||||          }t          ||||||	|
|d         |d         |d         |d         |d         |d         |d	         |d
         |           |S )zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr!   r    r#   r"   r   r   r   r   r$   )beta1beta2r    r#   r"   r   r   r   r   r$   rY   )	 _cuda_graph_capture_health_checkr?   enable_gradr:   r   tuplerA   rZ   r   )r.   closurelossrC   rT   rU   rV   rW   rX   r\   r]   rY   s               r1   r4   z
RAdam.step   s~    	--///"$$ ! !wyy! ! ! ! ! ! ! ! ! ! ! ! ! ! ! & 	 	E-/"$E%'H(*K(*KeUl 3U7^DDLE5**'+{ K  ;">2%Lz*i( .$%56',-E'F'!    & s   AA
A)r   r   r   r   FN)__name__
__module____qualname__r   rA   r   r`   boolr-   r9   rZ   r   r4   __classcell__)r0   s   @r1   r   r      s3        "%1',&+  $ $&+ &+ &+&+ FN&+ UE\"	&+
 &+ &+ !%&+ &+ &+ &+ &+ 
&+ &+ &+ &+ &+ &+P    (! ! !F "- - - "!- - - - -r2   a  Implements RAdam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2
                \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
                \lambda \text{ (weightdecay)}, \:\textit{maximize}                               \\
            &\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay}         \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0 \leftarrow 0 \text{ ( second moment)},                                       \\
            &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]
            &\rule{110mm}{0.4pt}  \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{6mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{12mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{6mm} \theta_t \leftarrow \theta_{t-1}                                       \\
            &\hspace{6mm} \textbf{if} \: \lambda \neq 0                                          \\
            &\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
            &\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t}            \\
            &\hspace{12mm}\textbf{else}                                                          \\
            &\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t}                               \\
            &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
                2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]
            &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\
            &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon  } \\
            &\hspace{12mm} r_t \leftarrow
      \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t        \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.

    This implementation provides an option to use either the original weight_decay implementation as in Adam
    (where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
    to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
    (default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
    corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
    about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.

    z
    Args:
        a  
        lr (float, Tensor, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): whether to decouple the weight
            decay as in AdamW to obtain RAdamW. If True, the algorithm does not
            accumulate weight decay in the momentum nor variance. (default: False)
        z	
        a  

    .. _On the variance of the adaptive learning rate and beyond:
        https://arxiv.org/abs/1908.03265
    .. _author's implementation:
        https://github.com/LiyuanLucasLiu/RAdam
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101

    r   rU   rV   rW   rX   r\   r]   r    r#   r"   r$   r   r   r   rY   r%   c       
         |  	 t           j                                        st          |          }t	          |           D ]w\  }}|s||         n||          }||         }||         ||         }t           j                                        sK|rIt                      }|j        j	        |j        j	        k    r|j        j	        |v st          d| d          t          j        |          rPt          j        |          }t          j        |          }t          j        |          }t          j                  |dz  }|r|nt          |          }|dk    r5|
r|                    d||z  z
             n|                    ||          }|                    |d|z
                                 |                              ||d|z
             d||z  z
  }d||z  z
  ||z  }dd|z
  z  dz
  d|z  ||z  z  z  z
  fd}	fd	}|rLt          j        d
k     |             |            z  d          }|                    ||z  |z  d           %d
k    r2|                    ||z   |            z   |            z  d           ]|                    ||z  d           yd S )NIIf capturable=True, params and state_steps must be on supported devices: .r   r   alpha)value   c                  D    dz
  dz
  z   z   dz
   dz
  z  z  z  dz  S )N   ro         ?rH   )rho_infrho_ts   r1   _compute_rectz+_single_tensor_radam.<locals>._compute_rectE  sK     19 aKGaK058:  r2   c                                                       } r|                               } n|                               } dz  | z  S )Nrr   )sqrtaddadd_)exp_avg_sq_sqrtbias_correction2r   r"   rK   s    r1   _compute_adaptive_lrz2_single_tensor_radam.<locals>._compute_adaptive_lrN  sT    (oo//O <"1"5"5c":":"1"6"6s";"; %c)_<<r2         @r(   g      )r?   jitis_scriptingr   	enumeratecompileris_compilingr   r7   typeAssertionErrorrM   view_as_realr   mul_rx   lerp_addcmul_wherery   )r   rU   rV   rW   rX   r\   r]   r    r#   r"   r$   r   r   r   rY   iparamrL   rJ   step_tcapturable_supported_devicesr4   bias_correction1bias_corrected_exp_avgru   r|   updater{   rK   rs   rt   s            ` `               @@@@r1   _single_tensor_radamr      s~   $ 9!!## ^^f%% SD SD5'6uQxxeAhY1+ ^
Q ~**,, 	 	+L+N+N(!V]%777L%)EEE$`|   E"" 	8&u--E%d++D(11G+J77J 	!#;vvF););1% ;

1rL001111xx\x:: 	dAI&&&''d!e)'DDDud{?ud{? ")+;!; q5y/A%!d(eTk25EEE	 	 	 	 	 		= 	= 	= 	= 	= 	= 	= 	=  	D[]]__/C/C/E/EEs F JJ-2V;4JHHHHs{{

***,,- $moo&       

1B6d
CCCCgSD SDr2   c       
           %& t          |           dk    rd S |rt          d          t          j                                        sP|rNt          d          %t          %fdt          | |d          D                       st          d% d	          t                    t          j
        | ||||g          }|                                D ]\  \  }}}}}}t          t          t                   |          }t          t          t                   |          }t          t          t                   |          }t          t          t                   |          }t          t          t                   |          }t          j                                        s9|d         j        r,t          j        |t          j        d
d          d
           nt          j        |d           |rt%          ||||           |rt          j        |          }ddz
  z  dz
  &|rt          j        |          }t          j        |           t          j        |d           t          j        |          }t          j        ||           t          j        |d           t          j        ||           t          j        |           t          j        |&           |}n&fd|D             }|dk    rO|
rt          j        |d|z  z
             n1|rt          j        |||           nt          j        |||          }t          j        ||dz
             t          j        |           t          j        |||dz
             ~|rt          j        |d          }t          j        |d          }t          j        ||           ~t          j        |&           &dz
  &dz
  z  &t          j        |&          } t          j        ||            ~ t          j        |           d t          ||d          D             }!~~d |!D             }"t          j        |"           t          j        |          }t          j        |           t          j        |d           t          j        |"|           t          j        |"           t          j        |          }t          j        |           t          j        |d           t          j        |           t          j        |           t          j        ||!           ~!t          j        |           t          j        ||           ~nf&fd|D             }!d |!D             }#fd|D             }fdt          |#|d          D             }"fdt          ||!|d          D             }t          j        |          }$t          j        |$|	           t          j        |$|           t          j        |$           t          j        |$|"           t          j        |||$           d S )Nr   z#_foreach ops don't support autogradF)supports_xlac              3   n   K   | ]/\  }}|j         j        |j         j        k    o|j         j        v V  0d S rc   )r7   r   ).0rD   r4   r   s      r1   	<genexpr>z&_multi_tensor_radam.<locals>.<genexpr>  s]       
 
 4 HMT[-- >!==
 
 
 
 
 
r2   T)strictrj   rk   r(   cpu)r7   rl   r   ro   c           	          g | ]@}d t          |          z  t          |          z  z  dt          |          z  z
  z  z
  AS )ro   r   r   )r   r4   r]   rs   s     r1   
<listcomp>z'_multi_tensor_radam.<locals>.<listcomp>  st         T""#Jt,,,. u
4 0 00022  r2   rq   c                 H    g | ]\  }}t          j        |d k    |d           S )r}   r'   r?   r   )r   nrt   s      r1   r   z'_multi_tensor_radam.<locals>.<listcomp>  s>       Au ECKC00  r2   c                 B    g | ]}t          j        |d k    dd          S )r   r'   r(   r   r   rects     r1   r   z'_multi_tensor_radam.<locals>.<listcomp>  s*    QQQDD1Hc3 ? ?QQQr2   c                 `    g | ]*}|d k    r |dz
  |dz
  z  z  dz
  dz
  z  |z  z  dz  nd+S )   rq   ro   rr   r   rH   )r   rt   rs   s     r1   r   z'_multi_tensor_radam.<locals>.<listcomp>  s~         199 QYqy"  !!4u<>
     r2   c                 "    g | ]}|d k    rd ndS )r   r(   rH   r   s     r1   r   z'_multi_tensor_radam.<locals>.<listcomp>  s$    CCCdq11cCCCr2   c                 :    g | ]}d t          |          z  z
  S )r   r   )r   r4   r\   s     r1   r   z'_multi_tensor_radam.<locals>.<listcomp>   s8          26EZ----     r2   c                 ,    g | ]\  }}|z  |z  d z  S )rH   )r   r   bcr    s      r1   r   z'_multi_tensor_radam.<locals>.<listcomp>#  s:          D" dR2%     r2   c                 `    g | ]*\  }}}d t          |          z  z
  dz  |z  |z  z  dz  +S )r   rr   r   r   )r   r4   r   r   r]   r    s       r1   r   z'_multi_tensor_radam.<locals>.<listcomp>'  sX          "D$ ez$////C7BINKbP     r2   ) r>   r   r?   r   r   r   allzipr   r   "_group_tensors_by_device_and_dtypevaluesr   listr   is_cpu_foreach_add_rB   r   _foreach_neg_foreach_pow_foreach_neg__foreach_mul__foreach_div__foreach_add_foreach_lerp__foreach_addcmul__foreach_sub_foreach_mul_foreach_sqrt__foreach_sqrt_foreach_reciprocal_)'r   rU   rV   rW   rX   r\   r]   r    r#   r"   r$   r   r   r   rY   grouped_tensorsgrouped_params_grouped_grads_grouped_exp_avgs_grouped_exp_avg_sqs_grouped_state_steps__grouped_paramsgrouped_gradsgrouped_exp_avgsgrouped_exp_avg_sqsgrouped_state_stepsr   r{   
rho_t_listnumsub2denomr   unrect_step_sizeunrectifiedbufferr   rs   s'        ```                             @@r1   _multi_tensor_radamr   k  s   $ 6{{a DBCCC >&&(( Z 'H(
 (
 (
$  
 
 
 
 v{4@@@
 
 
 
 
 	
 !{\x{{{   
BBB	+{; O ""$$_J _J 		 	d6lO<<T&\>::V.?@@"4<1EFF"4<1EFF ~**,, 	81DQ1G1N 	8#U\#e%D%D%DC      3Q777 	/?AT    	>!.}==M q5y/A%
  	$1%9LMM 0111 0!444$1%9LMM 02EFFF 0!444 02BCCC 0111 0':::)JJ     0  J 1% #NA\8I4IJJJJ  '%~\     %*$6%~\% % %M
 	-}a%iHHH/777q5y	
 	
 	

  B	$Z33C%j!44DT***W---{w{3G&z7;;EU+++ %%%  #CD A A A  D QQDQQQ 0"555$1%9LMM 0111 0!444 02BCCC 0111$1%9LMM 0111 0!444 !1222 0"555 0$777 0111 02BCCC      (  D DCdCCCK       :M             #K1A$ O O O              &)'/?' ' '      $%899FC(((F$4555"6***F$4555 	0@&IIII_J _Jr2   )single_tensor_fnFr   c                t   t          d |D                       st          d          |t          | |d          \  }}|r-t          j                                        rt          d          |r&t          j                                        st          }nt          } || ||||||||||
||||	           dS )zpFunctional API that performs RAdam algorithm computation.

    See :class:`~torch.optim.RAdam` for details.
    c              3   J   K   | ]}t          |t          j                  V  d S rc   )r)   r?   r   )r   ts     r1   r   zradam.<locals>.<genexpr>R  s.      @@qz!U\**@@@@@@r2   zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)
r\   r]   r    r#   r"   r   r$   r   r   rY   )r   rP   r   r?   r~   r   r   r   )r   rU   rV   rW   rX   r$   r   r   r   rY   r   r\   r]   r    r#   r"   r   funcs                     r1   r   r   8  s   4 @@K@@@@@ 
^
 
 	
 1Ne
 
 

7  U59))++ USTTT $uy--// $"#D!5%     r2   )FNFFFF)__doc__typingr   r?   r   	optimizerr   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   __all__r   r   rA   rg   r   r   r   rH   r2   r1   <module>r      su   . .                                              & G
N N N N NI N N Nd2f	  
  
  
  
  gK `hDLhD<hD 6lhD f	hD
 fhD hD hD 	hD hD 
hD !hD hD hD hD  !hD" 
#hD hD hD hDVJJLJJ<JJ 6lJJ f	JJ
 fJJ JJ JJ 	JJ JJ 
JJ !JJ JJ JJ JJ  !JJ" 
#JJ JJ JJ JJZ  1EFFF $) ; ;L;<; 6l; f	;
 f; !; D[; ; ; ; ; ;  !;" 	#;$ %;& 
';( 
); ; ; GF; ; ;r2   